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Preface 

This book was written both as an elementary text and as an 
attempt to add to wbat we presently understand, at the most 
advanced level, about what seems to me to be the central difficulty 
at the foundations of quantum mechanics, which is the difficul 
a out measurement. 

The first four chapters are 
duction to that difficulty: *~.;;.;;_~E.,_ ~~--=::.::;..:..:::.:..::;~~=:....;;....;:c 
sition, which is what mos -· t disti.n uishes the uantum-
mechanical picture of the world from the classical one, and which 
is where eve · t's puzzlin about quantum mechanics 

hapter 2 s ts up (in a way that presumes nothing at 
all, insofar as rstand how to do that, about the mathematical 
preparation of the reader) the standard quantum-mechanical for­
malism and outlines the conventional · bout how one 
ought to think about that formalism. 
stein-Podolsk -Rosen argument and nlrw'1b:at-;~ 
IJingly undercut by Bell (and it is urge t ere, y t e way, at w at 
Bell's discovery actually amounts to is very frequently misunder­
stood; it is ur ed that Bell discovered somethin not merely about 
hidden-variable theories but also out ntum mechanics and 
also about the world}. Finally, hapter 4 explicitly sets up the 
measurement problem. 

The rest of the book (which is the bulk of the book) is taken UQ 

with investi ations of those ideas about what to do about the 
measurement p em "ch seem to me to have some ossibili 
of bein r1 t· .Chapter 5 an account and a critique of the idea 
of the collapse ·wave function (with a detailed discuss· 
the recent breakthrough of Ghirardi, Rimini, and Weber)'-' hapter 
6 is about a certain very confused but nonetheless (I want t a 
very interesting tradition of thinking about the measurement prob­
lem which is (misleadingly) c t " any-worlds" interpreta­
tion of quantum mechanics. hapter 7 is bout a completely deter-

ix 
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ministic replacement quantu echanics due to de Broglie and 
Bohm and Bell. An Q!_apter 8 is about what the mental lives of 
sentient observers can poten 1a y be like, if either one of the pro­
posals discussed in Chapters 6 and 7 should actually happen to pan 
out. 

Lots of people helped me out with this. Let me mention a few. 
Barry Loewer is the one who first suggested that this book be 

written, and he has (astonishingly) been willing to spend many 
hours of his time talking about it with me, and many of the original 
ideas in it are (as the reader will learn from the references) partly 
his; and if not for all that, it simply could not have come into being. 

I've learned a great deal about the foundations of quantum 
mechanics from innumerable conversations, over many years, with 
(first and foremost) Yakir Aharonov, and also with Hilary Putnam, 
David Deutsch, Irad Kimchie, Marc Albert, Gary Feinberg, Lev 
Viadman, Sidney Morgenbesser, Issac Levi, Shaughn Lavine, and 
Jeff Barrett, and also with students in some classes I've taught. 

I am much indebted to Andrea Kantrowitz for doing such a great 
job with the illustrations; and I am thankful to Lindsay Waters and 
Alison Kent and especially Kate Schmit of Harvard University 
Press, without whose help and understanding this would have been 
a much less valuable book. 

And maybe it ought to be mentioned that this book was written 
in the hope of finally being able to explain these matters to the 
reasonable satisfaction of my uncle, the physicist Arthur 
Kantrowitz, who first got me interested in science. 



a bird is a bird 
slavery means slavery 
a knife is a knife 
death remains death 

-Zbigniew Herbert 
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Superposition 

Here's an unsettling story (the most unsettling story, perhaps, to 
have emerged from any of the physical sciences since the seven­
teenth century) about something that can happen to electrons. The 
story is true. The experiments I will describe have all actually been 
performed.1 

The story concerns two particular physical properties of elec­
trons which it happens to be possible to measure (with currently 
available technology) with very great accuracy. The precise physical 
definitions of those two properties don't matter. Let's call one of 
them the "~" of the electron, and let's call the other one its 
"hardness. "2 __..,. 

It happens to be an empirical fact that the color property of 
electrons can assume one of only two possible values. Every elec­
tron which has thus far been encountered in the world has been 
either a black electron or a white electron. None have ever been 

1. As a matter of fact, not all of these experiments have actually been carried 
out on electrons; in some cases the particles involved were neutrons, and in other 
cases the "particles" were atoms of silver. Nonetheless, all the experiments de­
scribed in this story have actually been carried out on one sort of particle or 
another; and as the reader shall see, the identities of the particles will turn out to 
be completely irrelevant to our concerns here. 

2. One of the properties I have in mind here is (as it happens) the angular 
momentum with which the electron is spinning about an axis which passes through 
its center and which runs along the x-direction, and the other one is the angular 
momentum with which the electron is spinning about an axis which passes through 
its center and which runs along they-direction. But all that (as I said) doesn't matter. 
There are lots of different measurable properties of physical systems that could 
serve our purposes here just as well. 
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found to be blue or green. The same goes for hardness. All electrons 
are either soh ones or hard ones. No one has ever seen an electron 
whose hardness value was anything other than one of those two. 

It's possible to build something called a "color box," which is a 
device for measuring the color of an electron and which works like 
this: The box (see figure 1.1) has three apertures. Electrons are fed 
into the box through the aperture on the left, and every black 
electron fed in through that aperture exits (along the indicated 
dashed line) through the aperture marked b, and every white elec­
tron fed in through that aperture on the left exits through the 
aperture marked w; and so the color of any electron which is fed 
in through that aperture on the left can later be inferred from its 
final position. It's possible to build "hardness boxes" too, and they 
work in just the same way (see figure 1.2). 

Measurements with hardness and color boxes are repeatable, 
which is something we've grown accustomed to requiring, by defi­
nition, of a "good" measurement of a bona fide physical variable. 
If, say, a certain electron is measured with a color box to be black, 
and if that electron (without having been tampered with in the 
meantime) is subsequently fed into the left aperture of another 

• 
b r--, 

-----~•~ Color -------• 

1 r 
Figure 1.1 
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color box, then that electron will with certainty emerge from that 
second color box through the b aperture as well. The same goes 
for white electrons, and the same goes (with hardness boxes) for 
hard and soft electrons too. All that can be (and has been) con­
firmed by means of tests with those boxes. 

Now, suppose that it occurs to us to be curious about the possi­
bility that the color and hardness properties of electrons might 
somehow be related to one another. One way to look for such a 
relation might be to check for correlations between the values of 
the hardness and color properties of electrons. It's easy to check for 
correlations like that with our boxes; and it turns out (once the 
checking is done) that no such correlations exist. Of any large 
collection of, say, white electrons, all of which are fed into the left 
aperture of a hardness box, precisely half emerge through the hard 
aperture, and precisely half emerge through the soft one. The same 
goes for black electrons fed into the left aperture of a hardness box, 
and the same for hard or soft ones fed into the left apertures of 
color boxes. The color (hardness) of an electron apparently entails 
nothing whatever about its hardness (color). 

Suppose we set up a sequence of three boxes. First a color box, l 
say, then a hardness box, and then another color box. Consider an 
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electron which emerges through the white aperture of the first color 
box, and thereafter (without having been tampered with)3 is fed 
into the left aperture of the hardness box, and which happens to 
emerge from that box through the soft aperture (as half of such 
electrons will), and thereafter (once again with no tampering) is fed 
into the left aperture of the second color box. That electron, as it 
enters that third box, is presumably known to be both white and 
soft. As there has been no tampering between boxes here, we 
should expect that the electron will emerge from this third box 
through the white aperture, confirming the result of the first mea­
surement. As a matter of fact, that isn't what happens. Precisely 
half of such electrons emerge from the white aperture of that third 
box, and the other half (the other half, that is, of those electrons 
which have been measured to be white and soft by the previous 
two boxes) emerge from the black aperture. The same goes for any 
other pair of results in the first two boxes, and the same goes if the 
color boxes in the above example are replaced with hardness boxes 
and the hardness box with a color one. Apparently (in the example 
we considered) the presence of the hardness box between the two 
color boxes itself constitutes some sort of color tampering. Indeed, 
that hardness box must be what's to blame for changing half of 
those white electrons to black ones, since we already know that 
two color measurements, without tampering between the boxes 
and without an intervening hardness measurement, will invariably 
produce identical results! 

Perhaps the hardness box is poorly built, crudely built. It seems 
to do its job of measuring hardness (without disturbing the hard­
ness in that process) well; but in the course of doing that job it 
apparently does disrupt color. That raises two questions. First, 
whether hardness boxes can be built less crudely; whether the job 
of measuring hardness can be accomplished more delicately, 
whether it can be accomplished without disrupting color. Second, 
in the case of this "crude" apparatus, this apparatus which changes 
the colors of fully half of the electrons whose hardnesses it mea-

3. Exactly what constitutes "tampering" and what doesn't is (of course) some­
thing one learns, at first, by experience. 
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sures: what is it that determines precisely which electrons have their 
colors changed and which don't? 

Let's talk about the second question first. The right way to 
discover precisely what it is that determines which electrons change 
color in passing through that intermediate hardness box and which 
don't would seem to be to monitor very carefully all of the mea­
surable properties of all of the electrons which are fed into that first 
color box in the course of some particular experiment and which 
are at that point found to be, say, white; and to make very certain 
that the physical states of those three boxes are held perfectly and 
constantly fixed throughout that experiment; and to look for cor­
relations between the measurable physical properties of those in­
coming electrons and their final positions as they emerge from the 
second color box. Well, it turns out that, in so far as we are 
presently able to tell, absolutely no such correlations exist. As a 
matter of fact, when we take whatever pains we know how to take 
to insure that all of the electrons in some particular experiment are 
fed into that first color box with precisely identical sets of physical 
properties, and to insure that the physical states of those boxes are 
indeed held precisely and constantly fixed throughout that experi­
ment, the statistics of final outcomes remain precisely as they were 
described above. In so far as we are now able to determine, then, 
this second question has no answer. That is, in so far as we are now] 
able to determine, those electrons whose color is changed by pas­
sage through a hardness box and those electrons whose color isn't 
changed by passage through a hardness box need not initially differ 
from one another in any way whatever. 

Let's try the first question. Can hardness boxes be built less 
crudely? Well, hardness boxes can be built in a number of entirely 
different ways. We can try each one. It turns out that they all 
produce the statistics described above. All of those boxes change 
the color of (statistically) precisely half of the electrons which pass 
through them. We can try to be much more careful and much more 
precise in constructing our hardness boxes, but it turns out that 
that doesn't change anything either. What's striking here isn't that 
we are unable to build hardness boxes which don't disturb the color 
of electrons at all, but rather that we are unable to move the 
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statistics of color disruption even so much as one millionth of one 
percentage point away from fifty-fifty, in either direction, no matter 
what we try. So long as the device at hand fulfills the definitional 
requirements of a hardness box (that is: so long as it's a device with 
which the hardnesses of electrons can be determined, repeatably), 
then the color randomization produced by that device has always, 
in our experience, been total; and all of the same goes for the effects 
of color boxes on hardness. 

Suppose we wanted to build a color-and-hardness box; that is, a 
device with which both the color and the hardness of electrons 
could be determined. That box would need five apertures (see figure 
1.3); one (on the left) where the electrons are taken in, one where 
white and hard electrons emerge, one where white and soft ones 
emerge, one where black and hard ones emerge, and one where 
black and soft ones emerge. 

Consider how we could build a box like that. A box like that 
would seem to need to consist of a hardness box and a color box. 
But if the incoming electrons are made to pass first through, say, 
the hardness box, then their hardnesses might subsequently be 

+ + I I 
I I 
I I 
I I 
I W+h I W+S r • Color'[;:;·--.... 

----•·~ Ha~~:ess ------• 
·-_____ _., b+h 

Figure 1.3 
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s 

Figure 1.4 

changed when they pass through the color box, and we would end 
up with reliable information only about the colors of the emergent 
electrons. If we put the color box first, we would end up with 
reliable information only about the hardnesses. Nobody's been able 
to think of any other ways to build a color-and-hardness box, and 
it's hard to imagine how, in principle, there could be other ways 
(other, that is, than building them out of color boxes and hardness 
boxes). So the task of putting ourselves in a position to say "the 
color of this electron is now such-and-such and the hardness of this 
electron is now such-and-such" seems to be fundamentally beyond 
our means. 

That fact is an example of the uncertainty princitz.le. Measurable] 
physical properties like color and hardness are said to be "in- J< 
compatible" with one another, since measurements of one will (so 
far as we know) always necessarily disrupt the other. 

O.K. Let's get in deeper. Consider the rather complicated device 
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shown in figure 1.4. In one corner there's a hardness box. Hard 
electrons emerge from that box, along route h, and at a certain 
point on route h there's a "mirror," or a "reflecting wall," which 
changes the direction of motion of the electron but doesn't change 
anything else (more particularly, it doesn't change the hardness of 
an electron that bounces off it), as shown. Similarly, soft electrons 
emerge along route s, and they run into the same sort of mirror, 
and finally routes h and s converge at the "black box." 

That black box is another device for changing the directions of 
motion of electrons on either of these two routes without changing 
their hardnesses. What it does is to make those two routes coincide 
after they pass through it. The fact that a soft electron entering the 
black box along s will emerge along h and s as a soft electron, and 
that a hard electron entering the black box along h will emerge 
along h and s as a hard electron, can, of course, be tested indepen­
dently before we set everything up; and the same goes for the 
mirrors. 

Let's do some experiments with this device. 
Suppose, first, that we feed a white electron into the hardness 

box, and then, once it has passed all through the setup drawn in 
figure 1.4, along path h and s, we measure its hardness. What will 
we expect to find? Well, 50 percent of such electrons will take route 
h out of the hardness box, and 50 percent will take routes. And 
so 50 percent will end up at h and s as hard electrons, and 50 
percent will end up there as soft ones (since nothing between the 
hardness box and hands, on either route, can change hardnesses). 
On repeating the experiment many times, we find that that is 
precisely what happens. 

Suppose that we feed a hard electron into the hardness box and 
then measure its color at h and s. Well, every electron like that will 
take route h through the apparatus and will emerge at h and s as 
a hard electron, and, as we know, 50 percent of such electrons will 
be found to be black by a color measurement, and 50 percent will 
be found to be white. If a soft electron were fed into the hardness 
box at the beginning, it would take route s and still be soft at h 
and s, and so the final color-measurement statistics of electrons like 
that ought to be fifty-fifty too. And all that, as before, is indeed just 
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what happens when we actually carry out a large number of such 
experiments. 

L~t'stry one more. This one is the surprise. Suppose that we feed 
a ~lectron into the hardness box at the beginning, and mea­
s~lor at the end. What should we expect then? Well,just as 
above, 50 percent of such electrons will turn out to be hard')md 
willtake h through the apparatus; and 50 percent will tUrnout to 
be soft and will take s. Consider the first half. They will all emerge 
ath and s as hard electrons, and consequently 50 percent will turn 
out to be black, on a color measurement, and 50 percent will turn 
out to be white. The second half, on the other hand, will all emerge 
as soft electrons, but of course their color statistics will be precisely 
the same. Putting all that together, it follows that of any large set 
of white electrons fed (one at a time) into this apparatus, half 
should be found at the end to be white, and the other half should 
be found to be black; and of course that makes very good sense, 
since (aside from a few harmless mirrors and a harmless black box) 
this apparatus is really just a hardness box, which is already known 
to randomize the color! 

The funny thing is that when you try this last experiment, that ~ 
isn't what happens at all! It turns out that exactly 100 percent of 
white electrons fed into this apparatus come out white at the end. 

That's very odd. It's hard to imagine what can possibly be going 
on. Maybe another experiment will help clear things up. Let's try 
this: Rig up a small, movable, electron-stopping wall that can be 
slid, at will, in and out of, say, route s (see figure 1.5). When the 
wall is "out," we have precisely our earlier apparatus; but when 
the wall is "in," all electrons moving along s get stopped and only 
those moving along h get through to h and s. 

What should we expect to happen when we slide the wall in? 
Well, to begin with, the overall output of electrons at h and s ought 
to go down by 50 percent, since the input white electrons ought to 
be half hard and half soft, and the latter shouldn't now be getting 
through. What about the color statistics of that remaining 50 
percent? Well, when the wall is out, 100 percent of white electrons 
fed in end up white. That means that all the electrons that take s 
end up white and all the electrons that take h end up white; and 
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Figure 1.5 

since we can easily verify that whether the wall is in or out of s can 
have no effect on the colors of electrons traveling along h, that 
implies that those remaining 50 percent should all be white. 

What actually happens when we do the experiment? Well, the 
output is down by 50 percent, as we expect. But the remaining 50 
percent is not all white. It's half white and half black. The same 
thing happens, similarly contrary to our expectations, if we insert 
a wall in the hard path instead. 

Now we're in real trouble. 
Consider an electron which passes through our apparatus when 

the wall is out. Consider the possibilities as to which route that 
electron can have taken. Can it have taken h? Apparently not, 
because electrons which take h (as we've just seen again) are known 
to have the property that their color statistics are fifty-fifty, whereas 
an electron passing through our device with the wall out is known 
to have the property of being white at hands! Can it have taken 
s, then? No, for the same reasons. Can it somehow have taken both 
routes? Well, suppose that when a certain electron is in the midst 
of passing through this apparatus, we stop the experiment and look 
to see where it is. It turns out that half the time we find it on h, 
and half the time we find it on s. We never find two electrons in 
there, or two halves of a single, split electron, one on each route, 
or anything like that. There isn't any sense in which the electron 
seems to be taking both routes. Can it have taken neither route? 
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Certainly not. If we wall up both routes, nothing gets through at 
all. 

So what we're faced with is this: Electrons passing through this 
apparatus, in so far as we are able to fathom the matter, do not 
take ro~e h and do not take route...s..an.d.da nat take both o~ 
routes and do not take neither of those routes; and the trouble is 
th~t th~~~ £~~-possihllitiesare-;i~Plv-alf_;;£_~ logical possibilities 
that we have any notion whatever of how to entertain! 

What can such electrons be doing? It seems they must be doing 
something which has simply never been dreamt of before (if our 
experiments are valid, and if our arguments are right). Electrons ..~,... 
seem to have modes of being, or modes of moving, available to Vf'­
them which are uite unlike what we know how to think about. 

The name of that new mode is just a name for something 
we don't understand) is uperpositio . What we say about an ~ 
initially white electron whic 1s now passing through our apparatus 
with the wall out is that it's not on h and not on n both 
and not on neither, but rathe that it's in a ¢' 
on h and being on s. And what that means none of , -
the above") we don't know. And some of what this book is going 
to be about are a number of attempts to (as it were) say something 
more about superposition than that. 

Let's make the main point (which is that superpositions are extraor­
dinarily mysterious situations) one or two more times. 

Here's a second example. It's possible to construct boxes which 
I'd like to call "total-of-nothing" boxes. A total-of-nothing box is 
a box with two apertures. An electron which is fed into one aper­
ture emerges from the other with all of its measurable properties 
(color, hardness, velocity, whatever) unchanged; and the time of 
passage through the box for any electron is equal to the time it 
would have taken for that electron to traverse an empty space the 
size of the box. Those are the defining properties of total-of-nothing 
boxes. 

Clearly, there are lots of ways to build total-of-nothing boxes. A 
completely empty box with two holes in it is a total-of-nothing box. 
We can also imagine building boxes which do all sorts of violent 
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things to the electrons fed into them but which subsequently undo 
all those things and finally eject those electrons, at the right times, 
at the right speeds, with all of their original physical properties. 
Every box like that will be a total-of-nothing box too. 

Now, recall the two-path apparatus of figure 1.4. White electrons 
fed into that apparatus always come out white. It turns out to be 
possible to build a total-of-nothing box which, when inserted into 
either one of those two paths, will make all of those outgoing 
electrons black instead of white. If the box is removed from the 
path, the outgoing electrons will all go back to being white. 4 So, 
inserting such a box into one of those paths will change the color 
of an electron passing through this two-paths apparatus. But total­
of-nothing boxes, by definition, change none of the properties of 
electrons which pass through them; and, of course, total-of-nothing 
boxes change none of the properties of electrons which don't pass 
through them! So it isn't possible that these electrons pass through 
the total-of-nothing box on one of the paths, since in that event 
their colors couldn't have been changed from white to black by the 
presence of the box; and it isn't possible that those electrons pass 
outside of the box, since in that event their colors couldn't have 
been changed either! And it isn't possible (by our earlier arguments) 
that those electrons pass both inside and outside of the box, and it 
isn't possible that they pass neither inside nor outside of the box. 
· Here's one final example, a very well-known one. Consider an 
arrangement such as is depicted in figure 1.6. On the left is a source 
of electrons. Electrons emerge from that source in a whole spectrum 
of possible directions, as shown. Slightly farther to the right is a 

t screen which electrons cannot pass through, and that screen has 
1 two holes in it. Still farther to the right is a fluorescent screen, much 

like a television screen, which lights up, at the point of impact, 
whenever it is struck by an electron (that is, this fluorescent screen 
is a measuring device for the positions of electrons). 

Suppose, first, that the top hole in the first screen is closed up, 
as in figure 1.6A. Electrons emerge, one by one, from the source, 

4. That there can be boxes like that was first predicted in a famous paper of 
Aharonov and Bohm (1959). 
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and move toward the first screen. Most of them run into the screen 
and are stopped there. Some get through the hole. Those latter land 
at various points on the fluorescent screen. The statistics of those 
landings (that is: how many land in any particular regi9n) are 
shown in the figure. Figure 1.6B gives the same information for the 
case when the bottom hole is closed instead of the top one. 

What sort of landing statistics should we expect when both holes 
are open? Well, all of the electrons which arrive at the fluorescent 
screen will have passed either through the top hole or through the 
bottom one. Those which pass through the bottom hole are known 
(by our first experiment with this apparatus) to give rise to the 
statistical landing pattern of figure 1.6A; and those which pass 
through the top hole are known to give rise to the statistical landing 
pattern of figure 1.6B; and so, in the event that both holes are open 
(and in the event that only one electron is allowed to pass through 
this apparatus at a time), we should expect a statistical landing 
pattern which is the direct sum of those two (as shown in figure 
1.6C). But that (it will be no surprise by now) is not what happens. 
The st~tistical landing pattern which emerges on the fluoresc;rt 
screen when both holes are open is markedly different from the 
direct sum of patterns A and B. So, it's inconsistent with these 
experimental results to suppose that an electron passing through 
this apparatus passes through the upper hole when both holes are 
open; and it is inconsistent with these experimental results to sup­
pose that an electron passing through this apparatus passes through 
the lower hole when both holes are open. And the same sorts of lexperiments and arguments as were described above will entail that 
it also can't be maintained that such electrons pass through both 
holes, and that it also can't be · · that they pass through 
neither hole. 

These electrons are then u er ositions f assin throu h 
the upper hole and assin throu e one· but (once again) 
we have no idea, or rather only a negative idea, of what that means. 

All this stuff about superpositions, by the way, sheds a very curious 
light on the phenomena of uncertainty and incompatibility (be-
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tween color and hardness, say) that we ran into at the beginning 
of this chapter. 

Consider this: We know, by experiment, that electrons emerge 
from the hard aperture of a hardness box if and only if they're hard 
electrons when they enter that box (that, as a matter of fact, is the 
sole property in virtue of which anything ever deserves to be called 
a hardness box). Similarly for soft ones. Now, when a white elec­
tron is fed into a hardness box, it invariably emerges (as we've just 
seen) neither through the hard aperture nor through the soft one 
nor through both nor through neither. So, it follows that a white 
electron can't be a hard one, or a soft one, or (somehow) both, or 
neither. To sa that a c o · white must be ·ust the same as 
~ that it's in a superposition f bein hard and soft. 

And consider (in 1g -,rnftnat) why it is that we find that we can't 
ever put ourselves in a position to say. "The color of this electnm. 
is now such-and-such and its hardness is now such-and-such." It 
isn't that our color and hardness boxes are built (somehow) crudely 
(which is what we suspected at first). And in fact it isn't at all a 
matter of our being unable to simultaneously know what the color 
and the hardness of a certain electron is (that is: it isn't a matter of 
ignorance). It's deeper than that. It's that any electron's even having 
any definite color apparently entails that it's neither hard nor soft 
nor both nor neither, and that any electron's even having any 
definite hardness apparently entails that it's neither black nor white 
nor both nor neither. 

And consider (while we're at it) why it is that the rules for 
predic.4ng the outcome of a measurement of (say) the _hardness df 
a white)electron turn out (in so far as we're now able to determine) 
to oe probabilistic rules rather than deterministic ones. It's like this: 
if it could ever be said of a wh_!~.electron that a measurement of 
its hardness will with certainty prqduce the outcome (say) "soft," 
or if it could ever be said of a whitt;: electron that a measurement 
of its hardness will with certainty. come out "hard," that would 
a_pQ~J.endy_be.im:ons.istent with wh.<'!LW~JlO_w..lm.o..uLto be the case, 
'!hl£~ is _t_hat_Sl1£h an.ele<:;rron{Lwb.i!~ ()I}~) is in~;Wosftion 
o.f_~e!ng harda~~-~_t:i!J.g_sof!. And on the other hand, our experience 
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l. s that every hardness measurement whatsoever either comes out 
J.., "hard" or it comes out "soft." And so a_pl'a.~ntly: the outcome of 
~ a hardness measurement on a white electron has got to be a matter 

of probabilia. 
But of course the business of talking more carefully about all this 

stuff (which is what I want to do here) will require an appropriate 
mathematical apparatus. And so the next chapter will lay an appa­
ratus like that out. 



. . . 2 ... 

The Mathematical Formalism and the 

Standard Way of Thinking about It 

There is an algorithm (and the name of that algorithm, of course, 
is quantum mechanics) for predicting the behaviors of physical 
systems, which correctly predicts all of the unfathomable-looking 
behaviors of the electron in the story in Chapter 1, and there is a 
standard way of interpreting that algorithm (that is, a way attempt­
ing to fathom those behaviors, a way of attempting to confront the 
fact of superposition) which can more or less be traced back to 
some sayings of Niels Bohr.1 This chapter will describe that algo­
rithm and rehearse that standard way of talking about it, and then 
it will apply them both, in some detail, to that story. 

Mathematical Preliminaries 

Let me say a few things, to begin with, about the particular math­
ematical language in which it is most convenient to write the 
algorithm down. 

Let's start with something about vectors. A good way to think 
about vectors is to think about arrows. A vector is a mathematical 
object, an abstract object, which (like an arrow) is characterized by 

1. The story of the evolution of this standard way of thinking is a very long and 
complicated one, and it will be completely ignored here. The far more obscure 
question of what Bohr himself really thought about these issues will be ignored too. 
What will matter for us is the legacy which Bohr and his followers have left, by 
whatever route, and whatever they themselves may have originally thought, to 
modern physics. That legacy, as it stands now, can be characterized fairly clearly. 
The name of that legacy is the Copenhagen interpretation of quantum mechanics. 

17 
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a direction (the direction in which the arrow is pointing) and a 
magnitude (the length of the arrow). 

Think of a coordinate system with a specified origin point. Every 
distinct geometrical point in the space mapped out by such a 
coordinate system can be associated with some particular (and 
distinct) vector, as follows: the vector associated with any given 
point (in that given coordinate system) is the one whose tip lies at 
the given point and whose tail lies at the origin. The length of that 
vector is the distance between those two points, and the direction 
of that vector is the direction from the origin to the given point (see 
figure 2.1). 

The infinite collection of vectors associated with all the points in 
such a space is referred to as a vector space. 

Spaces of points can be characterized by (among other things) 
their dimensionality, and spaces of vectors can too. The dimension 
of a given vector space is just the dimension of the associated space 
of points. That latter dimension, of course, is equal to the number 
of magnitudes, the number of coordinates, that need to be specified 
in order to pick out (given a coordinate system) some particular 
geometrical point. 

Figure 2.1 

given point 

vector associated with 
the given point 

coordinate axes _] 
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Figure 2.2, for example, shows a two-dimensional space, a plane 
of points, wherein (given the indicated coordinate system) two 
coordinates need to be specified (the x-coordinate and the y-coor­
dinate) in order to pick out a point. The reader can convince herself 
that a line of points forms a one-dimensional space, and that the 
space we move around in has three dimensions. Spaces of points 
with more dimensions than that are hard to visualize, but the 
formal handling (that is: the mathematical handling) of such spaces 
is not a problem. 

Let's introduce a notation for vectors: the symbols I ) around 
some expression will henceforth indicate that that expression is the 
name of the vector; so that, for example, lA) will denote the vector 
called A. That's the notation most commonly used in the literature 
of quantum mechanics. 

Vectors can be added to one another. Here's how: To add lA) to 
IB), move the tail of IB) to the tip of lA) (without altering the length 
or the direction of either in the process). The sum of lA) and IB) 
(which is written lA) + IB)) is defined to be that vector (IC)) whose 
tail now coincides with the tail of lA) and whose tip now coincides 
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with the tip of IB) (see figure 2.3). The sum of any two vectors in 
any particular vector space is always another vector in that same 
space (that, indeed, is part of the definition of a vector space). 
Think, for example, of the spaces discussed above. 

That fact is going to be important. Vectors, in quantum mechan­
ics, are going to represent physical states of affairs. The addition 
of vectors will turn out to have something to do with the superpo­
sition of physical states of affairs. The fact that two vectors can be 
added together to form a third will turn out to accommodate, 
within the algorithm, the fact that certain physical states of affairs, 
states like being white, are superpositions of certain other states of 
affairs, states like being hard and being soft; but of all this more 
later. 

Vectors can be multiplied too. There are two ways to multiply 
them. First of all, they can be multiplied by numbers. The vector 
SIA), say, is defined to be that vector whose direction is the same 
as the direction of lA) and whose length is 5 times the length of lA). 
SIA) = lA) + lA) + lA) + lA) + lA). Of course, if lA) is an element 
of a certain vector space, any number times lA) will be an element 
of that space too. 

The other way to multiply vectors is to multiply them by other 
vectors. The multiplication of a vector by another vector yields a 
number (not a vector!). lA) times IB) (which is written (AlB)) is 
defined to be the following number: the length of lA) times the 
length of IB) times the cosine of the angle, 6, between lA) and IB). 

Figure 2.3 
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The length of lA) (also called the norm of lA), which is written 
lA I) is obviously equal to the square root of the number (AlA), since 
the cosine of 0° (0° is the angle between lA) and itself) is equal to 1. 

So, vectors plus vectors are vectors, and vectors times numbers 
are vectors, and vectors times vectors are numbers. 

Here's a slightly more sophisticated way of defining a vector 
space: a vector space is a collection of vectors such that the sum of 
any two vectors in the collection is also a vector in the collection, 
and such that any vector in the collection times any (real) number 
is also a vector in the collection. Such collections (by the way) 
clearly have to be infinite. Think, again, of the examples of spaces 
described above. 

If IAI "'= 0 and IBI "'= 0 and yet (AlB) = 0 (that is: if the angle 
between lA) and IB) is 90°, since cos 90° = 0), then lA) and IB) are 
said to be orthogonal to one another. Orthogonal just means per­
pendicular. 

Here's another definition of dimension: The dimension of a vec­
tor space is equal (by definition) to the maximum number (call that 
number N) of vectors IAt), IA2), ... IAN) which can be chosen in 
the space such that for all values of i and j from 1 through N such 
that i "'= j, (A;IA;) = 0. That is, the dimension of a space is equal to 
the number of mutually perpendicular directions in which vectors 
within that space can point. 

Given a space, there are generally lots of ways to pick out those 
directions. Pick a vector, at random, from an N-dimensional space. 
It will always be possible to find a set of N - 1 other vectors in 
that space which are all orthogonal to that original vector and to 
one another. In most cases, given that original vector, there will still 
be many such orthogonal sets (or, rather, an infinity of such sets) 
to choose from. Figure 2.4 shows some examples. 

Think of an N-dimensional space. Think of any collection of N 
mutually orthogonal vectors in that space, and suppose that the 
norm, the length, of each of those vectors happens to be 1. Such a 
set of vectors is said to form an orthonormal basis of that N-di­
mensional space. Ortho is for orthogonal, normal is for norm-1, 
and here's why sets of vectors like that are called bases of their 
spaces: Suppose that the set IAt), IAz), ... IAN) forms a basis of a 
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All four of these vectors, moreover, are orthogonal 
to any vector pointing directly out of the page 

certain N-dimensional vector space; it turns out that any vector 
whatever in that space (call it IB)) can be expressed as the following 
sort of sum: 

where the b; are all simply numbers-more particularly, simply the 
following numbers: 

(2.2) b; = (BIA;) 

So any vector in a vector space can be "built up" (as in (2.1)) out 
of the elements of any basis of that space. All that is illustrated, for 
a two-dimensional space, in figure 2.5. 

Bases end up amounting to precisely the same thing as coordinate 
systems: given a coordinate system for an N-dimensional point 
space, N numbers (the coordinate values) will suffice to pick out a 
point; given a basis of anN-dimensional vector space, N numbers 
(the b; of equation (2.1)) will suffice to pick out a vector. Vectors 
which are of norm 1 and which point along the perpendicular 
coordinate axes of anN-dimensional point space will constitute an 
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I B> = b1IA1> + b2IA2> 
(Added up as In fig. 2.3) 

....__...,.'V,. __ , 
b1 

orthonormal basis of the associated N-dimensional vector space, 
and vice versa. 

For any space of more than a single dimension, there will be an 
infinity of equivalendy good orthornormal bases to choose from. 
Any vector in that space will be writable, a Ia (2.1 ), in terms of any 
of those bases, but of course, for a given vector IB), the numbers b; 
in (2.1) (which, by the way are called expansion coefficients) will 
differ from basis to basis. Figure 2.6 shows how that works. 

Now, it happens to be the case that for any three vectors lA), IB), 
and IC), the product lA) times the vector (IB) + IC)) is equal to the 
product lA) times IB) plus the product lA) times IC): 

(2.3) (AIIB) + IC)) = (AlB) + (AIC), 

and that can be shown to entail, for any two vectors IM) and IQ), 
that 

(2.4a) IM) + IQ) = (mt + qt)!At) + (m2 + q2liA2) + ... + 
(mN + qN)iAN) 
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I B> = b1 IAJ> + b2IA2> 
= b1"1A1"> + b2'1~'> 
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wherein the m; and q; are the expansion coefficients of IM) and IQ), 
respectively, in any particular basis jA;). The numbers q; and m; will, 
of course, depend on the choice of basis, but note that the sum of 
their products in (2.4b) (which is equal to (MjQ), which depends 
only on which vectors jM) and IQ) happen to be, and not on which 
basis we happen to map them out in) will not. That sum, rather, 
will be invariant under changes of basis. 

Suppose that we have agreed to setde on some particular basis 
for some particular vector space. Once that's done, all that will be 
required for us to pick out some particular vector (jQ), say) will be 
to specify the numbers (the expansion coefficients) q; of jQ) for that 
particular basis. Those N numbers then (once the basis is chosen) 
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can serve to represent the vector. Those numbers are usually written 
down in a column; for example: 

(2.5) 

IQ> = [ ~ l 
-312. 

{
<QIAl) = 1 

=the three-dimensional vector for which (QIA2) = 5 
(QIA3) = -312 

(see equation (2.2)), where the lA;) are the chosen basis vectors. If 
follows from (2.4b) that the norm (the length) of any vector IQ) 
will be equal to the square root of the sum of the squares of its 
expansion coefficients. That number, too, must obviously be invari­
ant under changes of basis. 

That's all that will concern us about vectors. The other sorts of 
mathematical objects which we shall need to know something 
about are operators. 

Operators are mechanisms for making new vectors out of old 
ones. An operator on a vector space, more particularly, is some 
definite prescription for taking every vector in that space into some 
other vector; it is a mapping (for those readers who know the 
mathematical meaning of that word) of a vector space into itself. 

Let's introduce a notation. Suppose that the operator called 0 is 
applied to the vector IB) (that is: suppose that the prescription 
called 0 is carried out on the vector IB)). The result of that oper­
ation, of that procedure, is written: 

(2.6) OIB) 

Then what was just said about operators can be expressed like this: 

(2.7) OIB) = IB') for any vector IB) in the vector space on which 
0 is an operator. 

where IB') is some vector in the same space as IB). 
Here are some examples. One example is the "unit" operator 
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(that's the prescription which instructs us to multiply every vector 
in the space by the number 1, to transform every vector into itself). 
The unit operator is the one for which 

(2.8) OuJB) = JB) = JB') 

Another example is the operator "multiply every vector by the 
number 5." Another example is the operator "rotate every vector 
clockwise by 90° about some particular vector JC)" (see figure 2.7). 
Another example is the operator "map every vector in the space 
into some particular vector JA)." 

The particular sorts of operators which will play a vital role in 
the quantum-mechanical algorithm are linear operators. Linear 
operators are, by definition, operators which have the following 
properties: 

(2.9a) O(JA) + jB)) = OjA) + OjB) 

and 

(2.9b) O(cJA)) = c(OJA)) 

Figure 2.7 

Suppose that IC> is a vector pointing directly out of the 
page. Then the operator "rotate every vector in the space 
clockwise by so· about IC>" will do this to I A> and I B >: 

becomes 

IB> 

OIB> 
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for any vectors lA) and IB) and any number c. Here's what (2.9a) 
says: take that vector which is the sum of two other vectors lA) and 
IB) (such sums, remember, are always vectors), and operate on that 
sum with any linear operator. The resultant (new) vector will be 
that vector which is the sum of the new vector produced by oper­
ating on lA) with 0 and the new vector produced by operating on 
IB) with 0. What (2.9b) says is that the vector produced by oper­
ating on c times lA) with 0 is the same as c times the vector 
produced by operating on lA) itself with 0, for any number c.2 

Now, the two conditions in (2.9) pick out a very particular sort 
of operator. They are by no means properties of operators in 
general. Let me leave it as an exercise for the reader to show, for 
example, that of the four operators just now described, the first 
three are linear and the last one isn't. 

Linear operators are very conveniently representable by arrays 
of numbers. We learned it was possible, remember, to represent any 
N-dimensional vector, given a choice of basis, by N numbers (ala 
equation (2.5) ); and it similarly turns out to be possible to represent 
any linear operator (the linearity is crucial here) on an N-dimen­
sional vector space by N2 numbers. Those N2 numbers are tradi­
tionally arranged not in a column (as in equation (2.5), for vectors), 
but in a matrix, as (for a two-dimensional operator, say) follows: 

(2.10) 0 =[On 012] 
021 022 

The numbers 0;; in (2.10) are defined to be 

(2.11) 0;; = (A;IOIA;)) 

That is: the number 0;; is the vector OIA;) multiplied by the vector 
lA;) (such products of vectors, remember, are always numbers), 

2. The two parts of (2.9) aren't completely independent of one another, by the 
way. Note, for example, that in the event that cis an integer, (2.9b) is entailed by 
(2.9a). 
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where the IAN) are the chosen basis vectors of the space. There's a 
rule for multiplying operator matrices by vector columns, which is: 

(2.12) 

Note that the right-hand side of (2.12) is a vector column; so this 
rule stipulates that the product of an operator matrix and a vector 
column is a new vector column. 

Here's why all this notation is useful: it turns out (we won't prove 
it here) that any linear operator whatever can be uniquely specified 
(given a basis choice) by specifying the~ 0;; of equations (2.10) 
and (2.11) (just as any vector can be uniquely specified by specify­
ing theN b; of equations (2.1) and (2.2) and (2.5)); and it turns out 
that for any linear operator 0, we can calculate O's effect on any 
vector IB) simply by multiplying the 0-matrix by the !B)-column 
(given, as always, a basis choice) as in (2.12). That is, for any linear 
operator 0 and any vector IB): 

(2.13) 

= (Ollbt + Ot2b2)1At) + (02tbt + 022b2)1A2) = IB') 

......... J(' 
these are numbers 

where lA) are the chosen basis vectors. 3 (The next-to-last equality 
follows from equations (2.1) and (2.2) and (2.5)). 

3. Perhaps it's worth saying all that out in words: In order to calculate the effect 
of any linear operator 0 on any vector jB), first choose a basis, then calculate the 
jB) column vector in that basis by means of formula (2.2); then calculate the 
operator matrix in that basis by means of formula (2.11); then multiply that column 
vector by that operator matrix by means of formula (2.12); and the result of that 
multiplication will be the column vector, in that same basis, of the new vector JB') 
(that is, the vector obtained by operating with 0 on jB)). 
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One more definition will be useful. If it happens to be the case 
for some particular operator 0 and some particular vector JB) that 

(2.14) OJB) = ®JB) 

where @ is some number-that is, if the new vector generated by 
operating on JB) with 0 happens to be a vector pointing in the same 
direction as JB)-then JB) is said to be an eigenvector of 0, with 
eigenvalue @ (where @ is the length of that new vector relative to 
the length of IB)). 

Certain vectors will in general be eigenvectors of some operators 
and not of some others; certain operators will in general have some 
vectors, and not others, as eigenvectors, and other operators will 
have other vectors as eigenvectors. The operator-eigenvector rela­
tion, however, depends only on the vector and the operator in 
question, and not at all on the basis in which we choose to write 
those objects down. In other words, if the eigenvector-operator 
relation obtains between the vector column and the operator ma­
trix of a certain vector and a certain operator in a certain particular 
basis, then it can be shown that the same relation, with the same 
eigenvalue, will obtain between the vector column and the operator 
matrix in any basis whatever of that space. 

Here are some examples: all vectors are eigenvectors of the unit 
operator, and all have eigenvalue 1; and similarly (but with eigen­
value 5) for the operator "multiply every vector by 5." All vectors 
of the form ®JC), where@ is any number, are eigenvectors of the 
operator "rotate every vector about JC) by 90°"; all those vectors 
have eigenvalue 1, and there are no other eigenvectors of that 
operator. The four-dimensional space operator (written down in 
some particular basis) 

(2.15) 
0=03.120 0 [

5 0 0 0] 

0 0 2 0 
0 0 0 -7 
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has eigenvectors (written in that same basis) 

{2.16) 

with eigenvalues 5, 312., 2, and -7, respectively. Any number times 
JA) or JB) or JC) or JD) will be an eigenvector of 0 too, with the 
same eigenvalue; but vectors like JA) + JB) won't be eigenvectors 
ofO. 

Quantum Mechanics 

Now we're in a position to write out the algorithm. It pretty much 
all boils down to five principles. 

(A) Physical States. Physical situations, physical states of affairs, 
are represented in this algorithm by vectors. They're called state 
vectors. Here's how that works: Every physical. system (that is: 
every physical object, and every collection of such objects), to begin 
with is associated in the algorithm with some particular vector 
space; and the various possible physical states of any such system 
are stipulated by or correspond to vectors, and more particularly 
to vectors of length 1, in that system's associated space; and every 
such vector is taken to pick out some particular such state; and the 
states picked out by all those vectors are taken to comprise all of 
the possible physical situations of that system (the correspondence 
isn't precisely one-to-one, however: we shall soon discover, for 
example, that for any vector JA) of length 1, -JA) must necessarily 
pick out the same physical state as JA) does). 

This will turn out to be a very apt way to represent states, since 
(as I mentioned before) the possibility of "superposing" two states 
to form another gets reflected in the algorithm by the possibility of 
adding (or subtracting) two vectors to form another. 

(B) Measurable Properties. Measurable properties of physical sys­
tems (such properties are referred to as observables, in the quan-
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tum-mechanical literature) are represented in the algorithm by lin­
ear operators on the vector spaces associated with those systems. 
There's a rule that connects those operators (and their properties) 
and those vectors (and their physical states), which runs as follows: 
If the vector associated with some particular physical state happens 
to be an eigenvector, with eigenvalue (say) a, of an operator asso­
ciated with some particular measurable property of the system in 
question (in such circumstances, the state is said to be an "eigen­
state" of the property in question), then that state has the value a 
of that particular measurable property. 

Let's try all that out. Let's construct a vector space in which the 
state of being hard and the state of being soft can be represented. 
Suppose we let the following two two-dimensional column vectors 
stand for hardness and softness: 

(2.17) 
lhard) = [6] !soft)=[~] 

Notice that if we adopt (2.17), (hardlsoft) = 0 (see equations (2.4) 
and (2.5)). As a matter of fact, the two vectors in (2.17) constitute 
a basis of the two-dimensional space which they inhabit. That 
particular basis, by the way, is precisely the one in which the vector 
columns in (2.17) have been written down (that is: the relevant 
basis vectors IAt) and IAz) of equation (2.5) are, in the case of 
(2.17), precisely lhard) and !soft)). 

What operator should represent the hardness property? Let's try 
this: 

(2.18) 
hardness operator = [ 6 _ ~] 

where we stipulate that "hardness= +1" means "hard" 
and that "hardness = -1" means "soft" 

So far all this works out right: lhard) and !soft) of equation (2.17) 
are, indeed, as the reader can now easily confirm, eigenvectors of 
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the hardness operator of equation (2.18), with the appropriate 
eigenvalues. 

Let's push this example further. Remember that it seemed to us 
in Chapter 1 that the "black" and "white" states must both be 
superpositions of both of the "hard" and "soft" states; and remem­
ber (from the present chapter) that the superposition of physical 
states is supposed to correspond somehow to the addition or sub­
traction of their respective state vectors; and remember that the 
sum or the difference of any two vectors in any particular vector 
space is necessarily yet another vector in that same space. All that 
suggests that the states of being white and being black ought to be 
representable by vectors in this space too, and that there ought to 
be a color operator on this space. Let's try this one, written down 
in the basis of equation (2.17): 

(2.19) 
lblack) = [~] 

color operator = [ ~ 6 J 

lwhite) = [ _lf~ J 

"color = + 1" means "black" 
"color = -1" means "white" 

That works out right too: The reader can show that the various 
stipulations of (2.19) are all consistent with one another, as are the 
stipulations of (2.17) and (2.18). Furthermore (blacklwhite) = 0 
too; and lblack) and lwhite) constitute another basis of this space. 

Now, it follows from (2.4a) that: 

(2.20) 
if lA) = [: J and IB> = [ ~ J 

in some particular basis, then 

lA) + IB) = [<a + c)] 
(b +d) 

in that same basis (and the same applies, of course, to vector 
columns of any dimension). 
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Notice, then, how beautifully (2.17) and (2.18) and (2.19) reflect 
the principles of superposition and incompatibility. First of all, it 
follows from (2.17) and (2.19) that: 

(2.21) !black) = V~hard) + V~soft) 

!white) = V~hard) - lf~soft) 

!hard) = lf~black) + lf~white) 

!soft) = lf~black) - lf~white) 

So sums and differences of vectors, in the algorithm, do denote 
superpositions of physical states; and (just as we concluded in the 
last chapter) states of definite color are superpositions of different 
hardness states, and states of definite hardness are superpositions 
of different color states. 

Moreover, look how well the forms of the hardness and color 
operators confirm all this: It's easy to verify that the "black" and 
"white" vectors aren't eigenvectors of the hardness operator, and 
that the "hard" and "soft" vectors aren't eigenvectors of the color 
operator. The hardness and color operators are (just as they ought 
to be) incompatible with one another, in the sense that states of 
definite hardness (that is: states whose vectors are eigenvectors of 
the hardness operator) apparently have no assignable color value 
(since those vectors aren't eigenvectors of the color operator) and 
v1ce versa. 

So it turns out that the descriptions of color and of hardness and 
of all the relations between them can be subsumed within a single, 
two-dimensional vector space. That space is referred to within the 
quantum-mechanical literature as the spin space, and color and 
hardness are referred to as spin properties. 

Let's get back to the enumeration of the five principles. 

(C) Dynamics. Given the state of any physical system at any "ini­
tial" time (given, that is, the vector which represents the state of 
that system at that time), and given the forces and constraints to 
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which that system is subject, there is a prescription whereby the 
state of that system at any later time (that is, the vector at any later 
time) can, in principle, be calculated. There is, in other words, a 
dynamics of the state vector; there are deterministic laws about 
how the state vector of any given system, subject to given forces 
and constraints, changes with time. Those laws are generally cast 
in the form of an equation of motion, and the name of that equa­
tion, for nonrelativistic systems, is the Schrodinger equation. 

Since every state vector must, by definition, be a vector of length 
one, the changes in state vectors dictated by the dynamical laws are 
exclusively changes of direction, and never of length. 

Here's an important property of the quantum-mechanical dy­
namical laws: Suppose that a certain system, subject to certain 
specified forces and constraints and whose state vector at time t1 is 
lA), evolves, in accordance with the laws, into the state lA') at time 
t1; and suppose that that same system, subject to those same forces 
and constraints, if its state vector at t1 is, rather, IB), evolves, in 
accordance with those laws, into the state IB') at time t1. Then, the 
laws dictate that if that same system, subject to those same forces 
and constraints, were, rather, in the state alA) + ~IB) at time tt, 
then its state at time t2 will be alA') + ~IB') (where lA) and IB) can 
be any state vectors at all). This property of the laws will concern 
us a good deal later on. The name of this property is linearity (and 
note that there is indeed a resemblance between "linearity" as 
applied to dynamical laws, here, and "linearity" as applied to 
operators, as in the two equations in (2.9)). 

(D) The Connection with Experiment. So far, almost nothing in 
these principles has touched upon the results of measurements. All 
we have is a stipulation in (B) that the physical state whose state 
vector is an eigenvector, with eigenvalue a, of the operator associ­
ated with some particular measurable property will have the value 
a for that property; and presumably it follows that a measurement 
of that property, carried out on a system which happens to be in 
that state, will produce the result a. But much more needs to be 
said about the results of measurements than that! What if we 
measure a certain property of a certain physical system at a moment 
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when (as must happen in the vast majority of cases) the state vector 
of that system does not happen to be an eigenvector of that prop­
erty operator? What if, say, we measure the color of a hard electron, 
an electron in a superposition of being white and being black? 
What happens then? Principle (B) is of no help here. A new princi­
ple shall have to be introduced to settle the question, which runs 
as follows: 

Suppose we have before us a system whose state vector is Ia), and 
we carry out a measurement of the value of property B on that 
system, where the eigenvectors of the property operator for B are 
IB = b;), with eigenvalues b; (i.e., BIB = b;) = b;IB = b;) for all i). 
According to quantum mechanics, the outcome of such a measure­
ment is a matter of probability; and (more particularly) quantum 
mechanics stipulates that the probability that the outcome of this 
measurement will be B = hi is equal to: 

Note that (as must be the case for probability) the number denoted 
by the above formula will always be less than or equal to 1; and 
note that in the special case of eigenvectors covered by principle 
(B), (2.22) yields (as it should) the probability 1. And note that it 
follows from (2.17) and (2.19) and (2.22) that the probability that 
a black electron will be found by a hardness measurement to be, 
say, soft, is (precisely as we have learned to expect) lt2. 

And this is where it emerges that the correspondence between 
states and vectors of length 1 isn't precisely one-to-one. First of all, 
it follows from equation (2.3) that (for any vectors Ia) and lb) and 
any number @) (al®lb) = @(alb). Now, since the probability (2.22) 
depends only on the square of the product of the vectors involved, 
and since (1x)2 = (-1x)2, it follows that the probability of any 
result of any measurement carried out on a system in the state Ia) 
will be identical to the probability of that same result of that same 
measurement carried out on a system in the state -Ia). Vectors Ia) 
and -Ia), then, have precisely the same observable consequences; 
which is to say (as is customary in the quantum-mechanical litera-
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ture) that the vectors Ia) and -Ia) represent precisely the same 
physical state. 

(E) Collapse. Measurements (as I remarked in Cha ter 1) are al­
ways, in principle, repeata e. nee a measurement is carried out 
and a result is obtained, the state of the measured system must be 
such as to guarantee that if that measurement is repeated, the same 
result will be obtained. 4 

Consider what that entails about the state vector of the measured 
system. Something happens to that state vector when the measure­
ment occurs. If, say, a measurement of an observable called 0 is 
carried out on a system called S, and if the outcome of that mea­
surement is 0 = @, then, whatever the state vector of S was just 
prior to the measurement of 0, the state vector of S just after that 
measurement must necessarily be an eigenvector of 0 with eigen­
value@. The effect of measuring an observable must necessarily be.. 
to change the state vector of the measured system, to "collapse" it, 
to make it "jump" from whatever it may have been just prior to 
the measurement into some eigenvector of the measured obse~ 
operator. Which particular such eigenvector 1t gets changed into is 
of cou;;e determined by the outcome of the measurement; and note 
that that outcome, in accordance with principle (D), is a matter of 
probability. It's at this point, then, and at no point other than this 
one, that an element of pure chance enters into the evolution of the 
state vector. 

Those are the principles of quantum mechanics. They are the 
most precise mechanism for predicting the outcomes of experi­
ments on physical systems ever devised. No exceptions to them 
have ever been discovered. Nobody expects any. 

Suppose that we should like to predict the behavior of some par­
ticular physical system by means of this algorithm. How, exactly, 

4. Supposing, of course, that there has been no "tampering" in the interim; and 
supposing that not enough time has elapsed for the natural dynamics of the 
measured system itself to bring about changes in the value of the measured observ­
able. 
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do we go about that? The first thing to do is to identify the vector 
space associated with that system: the space wherein all the possible 
physical states of that system can be represented. Given a precise 
physical description of the system, there are systematic techniques 
for doing that. Then the operators associated with the various 
measurable properties of that system need to be identified. There 
are techniques for doing that too. With that done, the specific 
correspondences between individual physical states and individual 
vectors can be mapped out (the vector which corresponds to the 
state wherein a certain measurable property has a certain value, for 
example, will be the one which is an eigenvector, with that eigen­
value, of the operator associated with that property). Then the 
present state vector of the system can be ascertained by means of 
measurements, and then (given the various forces and constraints 
to which the system will be subject) the state vector of any future 
time can be calculated by means of the prescription of principle (C), 
and then the probabilities of particular outcomes of a measurement 
carried out at some such future time can be calculated by means of 
principle (D), and the effect of such a measurement on the state 
vector can be taken into account by means of principle (E). And 
then principle (C) can be applied yet again, to that new state vector 
(the state vector which emerges from the measurement) to calculate 
the state vector of this system yet farther in the future, up to the 
moment when the next measurement occurs, whereupon principles 
(D) and (E) can be reapplied, and so on. 

Notice, by the way, that principle (E sti ulates that under certain 
partie ar circumstances (namely, when a measurement occurs)~ 
state vector evolves in a certain particular way (it "collapses" onto 
an eigenvector of the measured observable o erator). Notice, too, 

at principle (C) is supposed to be a completely general account 
of how the state vector evolves under any circumstances. If that's 
all so, a question of consistency necessarily arises: it seems like (E) 
ought to be just a special case of (C), that (E) ought to be deducible 
from (C). But it isn't easy to see how that could be Su.r--Mtitt:&-.&.~r 
changes in the state vector sti ulated b (E) 
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is going to require some worrying about, but let's not start that just 
yet; that worrying will commence in earnest in Chapter 4. 

As I mentioned before, there is a standard way of talking, which 
students of physics are traditionally required to master along with 
this algorithm, about what superpositions are. That line, that way 
of dealing with the apparent contradiction of Chapter 1, boils 
down to this: the right way to think about superpositions of, say, 
being black and being white is to think of them as situations 
wherein color predicates cannot be applied, situations wherein 
color talk is unintelligible. Talking and inquiring about the color 
of an electron in such circumstances is (on thts v1ew) like talking 
or in uiring about sa whether or not the number 5 is still a 

achelor. On this view, then, the contradictions of Chapter 1 go 
~On this view, it just isn't so that hard electrons are not black 
and not white and not both and not neither, since color talk of any 
kind, about hard electrons, simply has no meaning at all. _And that's 
the way things are, on this view, for all sorts of superposition: 
superpositions are sttuattons wherem the superposed redicates 
just don't app y. 

Of course, once an electron has been measured to be white or 
black, then it is white or black (then, in other words, color predi­
cates surely do apply). Measuring the color of a hard electron, then, 
is ' a matter of ascertaining what the color of that hard electron 
is; rather, it is a matter of first changing e state of the measured 
electron into one to which the color predicate applies, and to which 
the hardness predicate cannot apelx (this is the "collapse" of prin­
ciple (E)), and then of ascertaining the color of that newly created, 

&.- ~ color-applicable state. Measurements in quantum mechanics (arid 
I(J '<! particularly within this interpretation of quantum mechanics) are 

very active processes. They aren't processes of merely learning 
...v something; they a;e invariably processes which drastically change 

'ift' ~L1measured system. 
That's what's at the heart of the standard view. The rest (of which 
hall have much more to say later on) is details. 

* * * 



THE MATHEMATICAL FORMALISM 

39 

Here (before we move on to particular cases) are a few more general 
technicalities. 

First, the vector spaces which are made use of in quantum me­
chanics are complex vector spaces. A complex vector space is one 
in which it's permissible to multiply vectors not merely by real 
numbers but by complex (i.e., real or imaginary or both) numbers 
in order to produce new vectors. In complex vector spaces, the 
expansion coefficients of vectors in given bases (the b; of equation 
(2.1)) may be complex numbers too. That will necessitate a few 
refinements of what's been introduced thus far. 

In complex vector spaces, the formula for the product of two 
vectors, written in terms of their expansion coefficients in some 
particular basis (that is, the formula (2.4a)), needs to be changed, 
very slightly (what, precisely, it gets changed into need not concern 
us here), in order to guarantee that the norm of any vector (that is, 
its length: .V(AIA)) remains, under all circumstances, a positive real 
number. Formula (2.22) for probabilities needs to be altered very 
slightly too, since, in complex spaces, (AlB) and, hence, (2.22) may 
be complex numbers (and yet probabilities must necessarily be real, 
positive numbers between 0 and 1). The solution is to change (2.22) 
to 

(2.23) l<aiB = b;)l2 

where the vertical bars denote absolute value (or "distance from 
zero," which is invariably a real, positive number). Equation (2.23) 
stipulates that the probability that a measurement of B on a system 
in the state Ia) will produce the outcome B = b; is equal to the 
square of the distance from 0 of the complex number (alB = b;); 
and that probability, so defined, will invariably be a real and pos­
itive number. Formula (2.22), by the way, will entail not only that 
lA) and -lA) represent the same physical state (we've already seen 
that to be the case), but, more generally, that lA) and @lA) represent 
the same state, where @ may be any one of the infinity of complex 
numbers of absolute value 1. 

The elements of the operator matrices of linear operators on 
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complex vector spaces (that is, the numbers 0;; of (2.10) and (2.11)) 
can be complex numbers too. Nonetheless, it may happen to some 
such operators that all of their eigenvectors are associated only 
with real eigenvalues (albeit, perhaps, not all of their matrix ele­
ments 0;;, and perhaps even none of them, are real). Linear oper­
ators like that are called Hermitian operators; and it's clear from 
principle (B) (since, of course, the values of physically measur­
able quantities are always real numbers) that the operators associ­
ated with measurable properties must necessarily be Hermitian 
operators. 

Here are some facts about Hermitian operators: 
( 1) If two vectors are both eigenvectors of the same Hermitian 

operator, and if the eigenvalues associated with those two eigenvec­
tors are two different (real) numbers, then the two vectors in 
question are necessarily orthogonal to each other. 

That pretty much had to be so, if this algorithm is going to work 
out right; otherwise, measurements wouldn't be repeatable. The 
different eigenvalues of a property operator, after all, correspond 
to different values of that property; and (if measurements of a 
property are to be repeatable) having a certain value of a certain 
property must entail that subsequent measurements of that prop­
erty will certainly not find any other value of it;5 and that (given 
principle (D)) will require that state vectors connected with differ­
ent values of the same measurable property (Jblack) and !white), 
say, or Jhard) and !soft)) be orthogonal to one another. 

(2) Any Hermitian operator on an N-dimensional space will 
always have at least one set of N mutually orthogonal eigenvectors. 
Which is to say: it will always be possible to form a basis of the 
space out of the eigenvectors of any Hermitian operator; different 
bases, of course, for different operators. Consider, for example, the 
hardness operator of equation (2.18) and the color operator of 
equation (2.19). 

(3) The reader ought to be able to persuade herself, now, of the 
following: if a Hermitian operator on an N-dimensional space 

5. Supposing, once again, that no tampering, and no dynamical evolution, has 
gone on in the meantime. 
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happens to have N different eigenvalues, then there is a unique 
vector in the space (or, rather, unique modulo multiplication by 
numbers) associated with each different one of those eigenvalues; 
and of course the set of all eigenvectors of length 1 of that operator 
will form a unique basis of that space (or, rather, unique modulo 
multiplication by numbers of absolute value 1). Operators like that 
are called complete or nondegenerate operators. 

(4) Any Hermitian operator on a given space will invariably be 
associated with some measurable property of the physical system 
connected with that space (this is just a somewhat more informative 
version of the first part of principle (B)). 

(5) Any vector whatever in a given space will invariably be an 
eigenvector of some complete Hermitian operator on that space. 
That, combined with fact (2.4) and principle (B), will entail that 
any quantum state whatever of a given physical system will invari­
ably be associated with some definite value of some measurable 
property of that system. 

All this turns out to entail (among other things) that every quan­
tum-mechanical system necessarily has an infinity of mutually in­
compatible measurable properties. Think (just to have something 
concrete to talk about) of the space of possible spin states of an 
electron. There are, to begin with, a continuous infinity of different 
such states (since there are a continuous infinity of vectors of length 
1 in a two-dimensional space); moreover, given any one of those 
states, there are clearly a continuous infinity of different possible 
states which are not orthogonal to it. And, by facts (3) and (5) 
above, every state in this space is necessarily the only eigenstate 
associated with a certain particular eigenvalue of a certain partic­
ular complete operator, and, by fact (1), none of the continuous 
infinity of states which aren't orthogonal to the state in question 
can possibly be eigenstates of the same complete operator. What's 
more, the complete operators of which those other states are eigen­
states clearly can't even be compatible with the operator in ques­
tion. And so (since all this applies to every state in the space) there 
must necessarily be a continuous infinity of mutually incompatible 
complete measurable properties, of which color and hardness are 
only two. 



THE MATHEMATICAL FORMALISM 

42 

It will be useful, for what comes later, to give two more of those 
properties names. The vectors 

112lblack) + ...f3!2lwhite) and ...f3/2lblack) - 1/2lwhite) 

are both of length 1 and are orthogonal to one another (and aren't 
orthogonal to any of the eigenvectors of color or hardness), and so 
it follows that there must be a complete observable of which they 
are both eigenstates, with different eigenvalues (which can always 
be set at + 1 and -1, respectively). Let's call that observable "gleb." 
And the vectors 

112lblack) - ...f3!2lwhite) and ...f3/2lblack) + 112lwhite) 

are both of length 1 and are orthogonal to one another (and aren't 
orthogonal to any of the eigenvectors of color or hardness or gleb ), 
and so it follows that there must be a complete observable of which 
they are both eigenstates, with different eigenvalues (which can 
always be set at + 1 and -1, respectively). Let's call that observable 
"scrad." Of course, the eigenstates of gleb and scrad (just like those 
of color and hardness) both form different bases of the spin space. 

Finally, there are rules (never mind what those rules are, precisely) 
for adding and subtracting matrices to or from one another, and 
for multiplying them by one another. The commutator of two 
matrices A and B, which is denoted by the symbol [A,B], is defined 
to be the object AB - BA (the rules for multiplying matrices by 
one another entail that the order of multiplication counts: AB isn't 
necessarily the same as BA). 

Now, it can be shown that in the event that [A,B] = 0 (that is, 
in the event that AB is equal to BA), A and B share at least one set 
of eigenvectors which form a basis of the space. A little reflection 
will confirm that the operator matrices of incompatible observables 
can't possibly share any such complete basis of eigenvectors (since 
such eigenvectors would correspond to definite value states of both 
observables at the same time). It must be the case, then, that the 
commutators of incompatible observable matrices are nonzero. So 
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the property of commutativity (that is, the condition [A,B] = 0) 
turns out to be a convenient mathematical test for compatibility. 
Moreover, in cases of incompatible observables, the commutator of 
the two observables in question turns out to be extremely useful 
for assessing the degree of their incompatibility.6 

Coordinate Space 

Let's begin to apply all this. Let's see, in some detail, how to set up 
a quantum-mechanical representation, and a quantum-mechanical 
dynamics, of some simple physical system. Forget about color and 
hardness for the moment. Think of a familiar sort of particle, one 
with only the familiar sorts of physical properties: position and 
velocity and momentum and energy and things like that. 

Here's a way to get started: We know, from hundreds of years of 
experience, that the behaviors ·of relatively big particles, with rela­
nvely big masses ( articles ou can see, like rocks and baseballs 
an planets) are very well described by the c assica mechanics of 
Newton. That entails something about the quantum theory of 
particles: whatever that theory ends up predicting about the 
strange, tiny particles of Chapter 1, it ought to predict that every­
~ay particles, subject to everyday circumstances, will behave in th; 

6. Perhaps the notion of there being various different degrees of incompatibility 
requires some elucidation. Here's what the idea is (or here's what it is, at any rate, 
in the simplest case, when the observables involved are both complete): 

Consider two complete and incompatible observables (call them A and B) of some 
physical system. If, when any particular eigenstate of A obtains, the outcome of a 
measurement of B can be predicted (by means of formula (2.23)) with something 
approaching certainty (that is: if, for each eigenvector of A, there is some particular 
eigenvector of B such that the product of those two vectors is something approach­
ing one), then A and B are said to be only very slightly incompatible. But if (at the 
other extreme), when any particular eigenstate of A obtains, the probabilities of 
the various possible outcomes of a measurement of B are all the same (that is: if 
knowing the value of A gives us no information whatever about the outcome of an 
upcoming measurement of B), then A and B are said to be maximally incompatible. 

So (for example) color and hardness (which are maximally incompatible observ­
ables) are a good deal more incompatible with one another than color and scrad 
are. 
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everyday, Newtonian way. It turns out that that requirement (which 
is re red to in uantum-mec amca 1terature as the rinc1 e 
of orres ondence · can be parlayed into a prescription for calcu­
lating tlle'comm~tators of the quantum observable operators from 
mathematical relations among the corresponding measurable prop­
erties of the classical theory. 7 

Now, it happens that this prescription implies that the momen­
tum and the position of a particle are incompatible observables. 
The commutator of p and x (p is the traditional symbol for the 
momentum of a particle, and x stands for position) is 

(2.24) [p,x] = in 

where his a number, a physical constant, called Planck's constant, 
and i is the imaginary number r-1. The important thing about 
(2.24 ), of course, is just that it isn't zero. 

So, there will be a basis of the space of possible states of such 
particles consisting entirely of eigenvalues of the x operator, and 
there will be a basis of that space consisting entirely of eigenvectors 
of the p operator, and (since x and pare incompatible) those two 
bases won't consist of the same vectors. A state of some definite 
momentum will be a superposition of various different states of 
definite position, and a state of some definite position will be a 
superposition of various different states of definite momentum (just 
as it happened with color and hardness}.8 

Let's start to explore this space. Let's look at the x basis (the basis 

7. Actually, the logical relationship between that latter prescription (which 
relates the Poisson brackets of the classical theory to the commutators of the 
quantum theory) and the correspondence principle has long been a subject of 
dispute. The prescription's ultimate justification is that it seems to work. 

8. What about the consistency of all that with the known behaviors of, say, 
baseballs? Baseballs, after all, do have quite definite positions and quite definite 
velocities at the same time! And velocities, after all, are just momenta divided by 
the mass of the particle. Here's how that works: Since velocities are just momenta 
divided by mass, ranges (uncertainties) of velocities are just ranges of momenta 
divided by mass. So a big mass means a small velocity-uncertainty (even when the 
momentum-uncertainty is large). So baseballs (whose masses are relatively gigantic) 
can behave just as they always do and yet be fully in accordance with the laws of 
quantum mechanics. 
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of position eigenvectors). Let's call the position operator X. Con­
sider a particle which is confined (to keep things simple for the 
moment) to a one-dimensional coordinate space; a particle which 
is constrained to move along a line. Let IX = 5) represent the state 
in which that particle is located at the point 5. Then, in accordance 
with principle (B): 

(2.25) XIX = 5) = SIX = 5) 

Note that the possible eigenvalues of X (unlike those of color and 
hardness) will form a continuum extending from -oo to +oo (since 
the points on a line, the possible locations of such a particle, are 
continuous and infinitely extended). 

Now, since (in accordance with the facts about Hermitian oper­
ators that were recited at the end of the last section) the various 
different eigenvectors of X must necessarily form a basis of the state 
space of this particle, and since X has an infinity of different 
eigenvalues, and since the eigenvectors IX = @) associated with 
those different eigenvalues must necessarily all be orthogonal to 
one another, it follows that the state space of this particle must 
necessarily be infinite-dimensional! And here, by the way, a partic­
ularly dangerous confusion is to be scrupulously avoided. There are 
two "spaces" coming into play here: the one-dimensional coordi­
nate space, which is the space of locations, the familiar, ordinary, 
physical space in which the particle is free to move around; and the 
much more abstract vector space of states, which is here infinite­
dimensional and of which the locations (which constitute the entire 
coordinate space) merely form a basis. The two shouldn't get mixed 
up. 

The fact that the X eigenvectors form a basis of the state space 
also entails that any vector whatever (1-w), say) in that infinite-di­
mensional space can be expanded (in accordance with (2.1) and 
(2.2)) in terms of X eigenstates like this: 

(2.26) lw> = asiX = 5) + a7IX = 7) + an.931X = 72.93) + ... 
where ax = (\!fiX = x) 
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Let me introduce a notation now which will serve precisely the 
same purpose for infinite-dimensional vector spaces as the column­
vector notation of equation (2.5) serves for finite-dimensional vec­
tor spaces. Think of ax in (2.26) as a function of x: 

(2.27) ax = <wiX = x) = 'lf(x) 

Just as the N numbers in (2.5), in a given basis, pick out a unique 
vector, the function 'lf(x) (the infinite list of correspondences be­
tween a values and x values), in the X basis which is implicit here, 
serves to pick the unique vector 1'1') out of the infinite-dimensional 
space. Given a basis choice (which, as I said, is implicit here), a 'I' 
function (a wave function, as it's called in the literature) carries 
precisely as much information as does 1'1') itself. As a matter of fact, 
w(x) constitutes a blueprint from which (a la (2.26)) lw> can be 
explicitly constructed, and vice versa. 

It follows from (2.26), for example, that the function w(x) for 
the state IX = 5) is the function with value 1 at the point x = 
5 and 0 elsewhere and that the function w(x) for the state 
W2jX = 3) - VV2jX = 7) is the function with value 1/..[2 at the 
point x = 3 and the value - W2 at the point x = 7, and 0 elsewhere. 

Location probabilities can be read off from the wave functions 
too. It follows from (2.27) and (2.22) that if the wave function of 
a certain particle at a certain time is w(x), and if a position mea­
surement is carried out at that time on that particle, then the 
probability that that measurement will find that particle to be 
located at the point x = xh say, will be equal to lw(xtW (that is: 
the square of the magnitude of 'I'(X) at the point Xt).9 

Moreover, any measurable property of particles (momentum, 

9. All this is a little bit oversimplified. The way I've been talking over the last 
few paragraphs (and the way I'll be talking throughout the rest of this book, except 
on special occasions) is as if the points in space which an electron can potentially 
occupy form a discrete set. But what those points really form, of course, is a 
continuum. And so sums like the one in (2.26) really ought to be integrals; and the 
sorts of position probabilities one typically calculates in quantum mechanics are 
really probabilities of certain particles being found in certain finite regions, and not 
probabilities of finding them at certain particular points. 
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energy, whatever) turns out to be representable as an operator on 
the wave function (namely, as some prescription for taking one 
wave function into another), rather than on the state vectors; and 
eigenfunction-eigenvalue-operator relations precisely analogous to 
those stipulated in equation (2.14) and in principle (B) apply here; 
and there are rules for adding and multiplying wave functions 
(analogous to (2.4a) and (2.4b)) whereby the sums and products 
of state vectors can be calculated; and even the equations of motion 
of the state vector can be recast as equations of motion for the wave 
function. To make a long story short, anything whatever that can 
be said about the state vectors of particles can be translated into 
the language of wave functions. And that's pretty much all there is 
to the quantum mechanics of single, structureless particles. 

Systems Consisting of More Than a Single Particle 

We shall need to know something about the quantum mechanics 
of systems consisting of more than one particle too. A two-particle 
system will suffice as an example. Let's set up the state space of a 
system like that. 

Here's how to start: Imagine a pair of particles, one of which 
(number 1) is in the state IVa) and the other of which (number 2) 
is in the state l'l'b). The quantum state vector of a pair of particles 
like that is traditionally written down like this: 

or like this: 

(2.29) I'J'!, '!It> 

These are taken to represent a vector in the state space of the 
two-particle system. 

Let's reason out some of the properties of such systems. The 

But none of that is going to make any difference whatever to the sorts of 
questions I want to talk about here. 
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probability calculus, to begin with, is going to get more compli­
cated: we shall have to deal, now, with joint probabilities involving 
the outcomes of one sort of measurement carried out on, say, 
particle 1 and the outcomes of another sort of measurement carried 
out, at the same time, on particle 2. Suppose that the two particles 
described above don't interact with one another. Then the familiar 
laws of composition for independent probabilities ought to apply: 
The probability that the outcome of a measurement of property A 
on particle 1 is A = a and the outcome of a measurement of 
property Bon particle 2 is B = bought to be equal to the proba­
bility of the former outcome times the probability of the latter one. 
Those two probabilities, of course, are ones that we know how to 
calculate from the one-particle theory. Now, if the two-particle 
probability calculations are to proceed in accordance with (2.22), 
and if the laws of composition are to apply, then it's easy to show 
that the rule for multiplying vectors like (2.28) or (2.29) by one 
another is going to have to be: 

(2.30) ('If!, wal'lf~, 'Jii) = ('lf!l'lf!) X (wal'l'i) 

Let's go on.10 Suppose that the vectors l'l'l> ... lwk) constitute a 
basis of the state space of particle 1, and that lwi) ... 1'1'~) consti­
tute a basis of the state space of particle 2 (of course, we've just 
learned that each of those bases must in fact consist of a continuous 
infinity of vectors; but pretend, for the moment, to make things 
simpler, that that isn't so). Then (2.30) entails that 

(2.31) (wl, wflwl, 'Iff) = 0 unless i = k and i = I 

10. We're doing things kind of backwards here, of course. If we knew precisely 
what sort of vector space we were dealing with, and if we knew precisely what 
sorts of vectors are represented by (2.28) and (2.29), then (2.30) could simply be 
derived from, say, (2.4b), and then the composition law for probabilities would 
follow from (2.30) and (2.22). As things stand, however, we don't know what sorts 
of vectors (2.28) and (2.29) represent. Our strategy for finding that out is to assume 
the composition law, to derive (2.30) from that (together with (2.22)), and then to 
use (2.30) to ascertain what sorts of vectors and vector spaces we're dealing with. 
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and that entails that the dimensionality of the two-particle state 
space will be equal to the dimensionality of the state space of 
particle 1 times the dimensionality of the state space of particle 2. 
The dimensionality of the two-particle space, in other words, is Nl. 
The entire set of Nl vectors of the form 

(2.32) l'lfl, 'I'J) for i, j = 1 ... N 

will all be orthogonal to one another, and they will form a basis of 
the two-particle space; and (as always) any linear combination of 
those basis vectors of the form 

(2.33) 1'1'1,2) = aul'lfl, 'Jri) + aul'lfl, ~) + ... 

will be another vector, another possible state, in that space. 
Now something interesting comes up. Consider a state of the 

two-particle space of the form: 

(2.34 l IQ> = Wllvl, 'lri> + Wllvl, ~> 

It can be shown that the state IQ) cannot possibly be recast (no 
matter what bases we choose within the spaces of the two individ­
ual particles) in the form If\ g2). That is, states like (2.34) cannot 
possibly be decomposed into a well-defined state of particle 1 and 
a well-defined state of particle 2; states like that cannot possibly be 
described by propositions of the form "the state of particle 1 is 
such-and-such" and "the state of particle 2 is such-and-such." In 
states like (2.34) (and this is just another way of saying the same 
thing), no measurable property of particle 1 alone, and no measur­
able property of particle 2 alone, has any definite value. The small­
est system to which any state can be assigned here, the smallest 
system which can be assigned a definite value of any measurable 
property, 11 is the two-particle system. States like that are called 
nonseparable; and the phenomenon of nonseparability (like those 

11. We're not talking about properties like mass or charge here, of course (those 
are simply among the defining characteristics of particles), but about coordinate­
space properties like position or momentum or velocity or energy. 
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of superposition and incompatibility} is widely thought to be one 
of the most profound differences there is between quantum me­
chanics and the classical picture of the world. 

Here's an example: Consider the state 

which I've written down in the notation of (2.28) (X1 and X2 are 
the X operators of particles 1 and 2, respectively). Neither the 
position of particle 1, nor the position of particle 2, nor anything 
else about either of them separately, has any definite value here; but 
the difference in their positions does have a definite value;12 that is: 

Let me say something more about the calculations of probabilities 
of experimental results in the two-particle case. Formula (2.22) is, 
of course, still the rule; but the application of (2.22) to two-particle 
systems will require some elaborating. There are two interesting 
cases. 

Suppose, first, that the state of the two-particle system is lk), and 
that A 1 and B2 (which are complete observables of particles 1 and 
2, respectively) are measured (the example discussed just above 
equation (2.30) is a case like that; in that case, the state lk) happens 
to be separable). The probability that the outcomes of those exper­
iments will be A 1 = a; and B2 = b; is 

(2.37) I<A 1 = a;, B2 = b;lk)l2 

Now suppose that the two-particle state is lk) and that only A 1 is 
measured. The probability that the outcome of that measurement 
will be Al=a; is 

12. Perhaps it's worth saying explicitly, at this juncture, that the way one applies 
one-particle operators to two-particle states is exactly the way one would think one 
does: lA 1 = w, B2 = z) is an eigenvector of A 1 with eigenvalue w, and of B2 with 
eigenvalue z, and of A 1 - B2 with eigenvalue w - z. 
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where U is some complete observable of particle 2, and where the 
sum ranges over all the eigenvalues l; of L. L can be any complete 
observable of particle 2 at all; no matter which one we pick, the 
answer will come out the same. The intuition connected with (2.38) 
is something like this: the probability that A 1 comes out to be a; is 
equal to the sum of the probabilities of all of the various different 
ways in which it might come to pass that A 1 comes out to be a;. 

The principle of collapse for two-particle systems will need some 
elaborating too. Principle (E) is still the rule, but we shall need to 
say more precisely what (E) means for two-particle systems. Sup­
pose, then, that the state of a certain two-particle system just prior 
to the time t1 is ID); and suppose that at t1 the observable A 1 (of 
particle 1) is measured, and suppose that the outcome of that 
measurement is A 1 = as. Here's how to calculate the state of the 
two-particle system just after t1 (here, that is, is how to calculate 
what state the state of the two-particle system gets changed into by 
the A 1 measurement): Start with the state I D) expressed in terms of 
eigenstates of N and U (where U is any complete observable of 
particle 2; no matter which one we pick, this calculation will come 
out the same): 

(2.39) ID) = d11IA1 = ah U = /1) + dujA1 =a~, L2 = /2) + .. . 
+ d1NIA1 = ah U = /N) + d21IA2 =a~, L2 = /1) + .. . 

where 

(2.40) d;; = (A1 = a;, L2 = /;ID) 

Then, throw away all of the terms in (2.39) other than the ones for 
which A 1 = as. Then, multiply all the remaining d;;'s (that is, the 
ds;'s) by some number (the same number for all the ds;'s, so as not 
to alter their relative magnitudes), so as to make the remaining part 
of (2.39) a vector of norm 1. And that new vector is the state vector 
of this two-particle system just after the measurement. 

Here are some examples. For one-particle systems (for which, of 
course, there is no U property) this generalized prescription for 
collapse will entail that the effects of measurements are just as they 
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were described in principle (E). For two-particle systems in separa­
ble states, this principle will entail that the measurement only 
affects the state of the measured particle. Here's how that works: 
Suppose that the premeasurement state ID) is the separable state 

(2.41) ID) = IQ1 = w, M2 = z) 

suppose that A 1 is measured, with the outcome A 1 = as. Then, let 
U in (2.39) be M2 (remember that we can choose any operator we 
like for U), and (2.39) will take the form: 

with 

And so, following the instructions below (2.40), we end up with 
the postmeasurement {pm) state: 

(2.44) ID)pm = IA1 =as, M2 = z) 

The interesting cases, though, are the nonseparable ones. In those 
cases (unlike in the separable ones) the measurement brings about 
changes in the quantum mechanical description of the unmeasured 
particle as well. Suppose, for example, that the premeasurement 
state is 

where, once again, A1 is eventually measured, with the result A 1 = 
as. Formula (2.45) has already been written down in the form of 
(2.39), so we can proceed directly to carrying out the instructions 
below (2.40). Once those instructions have been carried out, we 
end up with: 
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One more thing needs to be described before we can talk about the 
story in chapter 1. If the values of M separate and if independent 
physical properties of a certain physical system need to be specified 
in order to uniquely pick out that system's physical state, then that 
system is said to have M degrees of freedom. A single, structureless 
particle confined to a one-dimensional coordinate space has 1 de­
gree of freedom; and a system consisting of two such properties 
(such as we have just now been considering) has 2 degrees of 
freedom; and a single particle free to move in a three-dimensional 
coordinate space has 3; and a particle that has color-hardness 
properties and is free to move in a three-dimensional coordinate 
space has 4. The quantum-mechanical treatment of systems with 
multiple degrees of freedom is precisely analogous to that of mul­
tiple particle systems just described. The states of such systems, as 
for multiple-particle systems, are written down, degree of freedom 
by degree of freedom, side by side, as in (2.28) and (2.29). For 
example, the state of a white electron whose coordinate-space wave 
function is 'lf(x) is written (in the hardness basis of equation (2.17)) 
as 

(2.47) 
[ V-../2] I > -V-../2 'I' 

And everything I've said here about multiple-particle systems ap­
plies straightforwardly to multiple-degree-of-freedom systems too. 

The Two-Path Experiments 

Now we're ready to retell the crucial stories of Chapter 1. The third 
two-path experiment (the one that's so perplexing) is mapped out 
carefully, with the help of a coordinate system, in figure 2.8. The 
times at which the various different stages of the experiment unfold 
are indicated there too. 

At time th when the particle is about to enter the apparatus, its 
state is: 
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Figure 2.8 

(2.48) lwhite, X = X1, Y = Yt) 

= [-~~]IX= X!, y = Yt) 

= (lf~b]- lf~~} IX= x1, Y = Yt) 

= 1!'i11hard)IX = Xt, Y = y1) - 1!'i11soft)IX = Xt, Y = Yt) 

Ia) I b) 

where, as usual, I've written out the spin vectors in the hardness 
basis. Here's how to calculate what happens next. Consider this: If 
the state at tt weren't (2.48) but, rather, just lA), and if the hardness 
box really is a hardness box, then the state at time tz would be 

(2.49) lhard)IX = Xz, Y = Yz) 
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And if the state at t1 were just lb), then the state at tz would be 

(2.50) lsoft)IX = X3, Y = Yt) 

However, as the state at tt is in fact neither Ia) nor lb) but, rather, 
V..J1ja) - V..J1jb), it follows from (2.49) and (2.50) and from the 
linearity of the quantum dynamics (which was spelled out in prin­
ciple (D)) that the state at tz is really 

This state, by the way, involves nonseparable correlations between 
spin and coordinate-space properties of the electron: No spin prop­
erty of the electron in this state (neither hardness nor color nor 
anything else) nor any of its coordinate-space properties (position, 
momentum, etc.) has any definite value here, just as no property of 
either particle 1 or particle 2 is separately definite in the state of 
equation (2.34). The only properties which are definite in (2.51) 
involve combinations of spin-space and coordinate-space variables 
of the particle. We'll talk about those later on. 

Formula (2.51) represents a superposition of states, in one of 
which the electron is traveling along the hard path and in the other 
of which the electron is traveling along the soft path. It is of the 
state in formula (2.51) that we were compelled to conclude, in 
Chapter 1, that it's false that the electron takes the hard path, and 
false that it takes the soft one, and false that it takes both, and false 
that it takes neither; and the problem was that those four claims 
together amount to a contradiction. On the standard way of think­
ing, as I've mentioned already, those hypotheses (hard path, soft 
path, both, neither) aren't false, they're meaningless, they're cate­
gorical mistakes. 

Let's go on. The same sort of reasoning as led from (2.48) to 
(2.51) will imply, starting from (2.51), that the state of the electron 
at t3 is: 
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and the same sort of reasoning applied, in turn, to (2.52) will imply 
that the state at time t4 is: 

(2.53) V-Y2!hard)IX = xs, Y = y4) - V-Y2!soft)IX = xs, Y = y4) 

= 1!'-'l(lhard) - lsoft))IX = xs, Y = Y4) 

= lwhite)IX = xs, Y = Y4) 

At this point, the spin state and the coordinate-space state have 
become separable again. The position of the electron once again 
has a definite value now, and that (as can be seen from the calcu­
lation in (2.53)) renders its color definite too. So, the fact that a 
hard electron fed into this device will come out hard, and that a 
soft electron will come out (at that same point) soft, together with 
the linearity of the quantum dynamics, entails that a white electron 
fed into this device will come out (just as we found it did) white. 

What if we were to stop the experiment in the middle by mea­
suring the position of the electron at, say, t3? Then the superposition 
would go away; a collapse (much like the collapse described in 
equations (2.45 )-(2.46)) would occur, and the state just after the 
measurement would be either 

(2.54) lhard)IX = X3, Y = y3) or lsoft)IX = X4, Y = y2) 

each with a probability of 112 (in accordance with (2.22) and 
(2.38)), and the state at t4 would be (respectively) 

(2.55) lhard)IX = xs, Y = y4) or lsoft)IX = xs, Y = y4) 

What if we put a wall into the soft path at Yh X3? Then the state 
at t4 would be: 

(2.56) V-Y2!hard)IX = xs, Y = y4) - V-Y2!soft)IX = X3, Y = Yt) 

In this instance, then, the state remains nonseparable between the 
spin and coordinate-space properties at t4. If a measurement of the 
position of this electron were to be carried out at t4 (if, say, we were 
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to look and see whether the electron had emerged from the black 
box), the probability of finding it at (xs, y4) would be lti, and if it 
were found there it would be hard, and if its color were measured, 
it would be as likely to be found black as white; and all that, once 
again, is precisely in accord with the results of the experiments 
described in Chapter 1. 

The state described in (2.56), as I just mentioned, is nonseparable 
between spin and coordinate space, so it isn't associated with any 
definite values for hardness or color or position or momentum or 
anything like that. Nonetheless, (2.56) is a quantum state (that is, 
it's a vector in the state space of this electron), so (in virtue of fact 
(5) about Hermitian operators) it must be associated with definite 
values of some measurable properties. 

Let's find out what those properties are. First let's simplify our 
notation a bit. The electron in (2.56) has only two possible posi­
tions, so let's replace the position operator (which has an infinity 
of possible eigenvalues, most of which are irrelevant here) with 
something we'll call a "where" operator (which has only two 
possible eigenvalues). "Where = + 1" means X = Xs, Y = y4; 
"where = -1" means X = X3, Y = Yt· If we represent the eigen­
vectors of where like this: 

(2.57) IX = Xs, Y = Y4) = [ b] 
then 

(2.58) 
where= [b -~] 

So, (2.56) can be rewritten like this: 

(2.59) V..J2[1] [11 _ V..ff[Ol [OJ 
O hard O here 1 ard 1 where 

The subscripts to the column vectors above indicate what degrees 
of freedom those vectors refer to. Now let's define one more Her-
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mitian operator (one more observable, that is); one which operates 
on the position space. Let's call it "zap": 

(2.60) zap=[~ ~] 

written in the where basis. The reader can now confirm for herself 
that (2.59) is an eigenstate of hard minus where, with eigenvalue 
0, and that it's an eigenstate of color minus zap, with eigenvalue 0; 
and it turns out that those two eigenvalues uniquely pick out the 
state (2.59). Precisely what sort of measurable property zap is, and 
precisely how to measure it, is a complicated matter; but (in accor­
dance with fact (4) about Hermitian operators) it is, with certainty, 
such a property. 

Let me, finally, say something about how to build the sort of 
total-of-nothing box described in Chapter 1. Consider a system 
whose state vector, at a certain moment, islA); and suppose that a 
measurement of a complete observable B is to be carried out on 
that system. The probabilities of the various possible outcomes of 
that measurement are given by equation (2.23 ). Now, suppose that 
the state of that system were not lA) but, rather, -lA). Since (2.23) 
depends not on (AlB = b;) itself but, rather, only on the square of 
(AlB = b;), the change from lA) to -lA) won't make any difference 
in any of those probabilities, no matter what observable B may 
happen to be. Suppose, for example that 

(2.61) 
lA) = lhard) = [~] 

Then 

(2.62) 
-JA) = -1 X [~] [ -~] 

and it follows from (2.4b) that the square of the product of any 
column vector with (2.62) will be equal to the square of the product 
of that same vector (whatever vector that is) with (2.61). 
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So, a box which changes the state of any incoming electron into 
-1 times that incoming state will be a total-of-nothing box, since 
it will change none of the values, nor any probabilities of values, 
of any of the observables of any electron which passes through it; 
needless to say, such a box will have no effect whatever on the state 
of an electron which passes outside of it. 

But the effects of such a box on an electron which is in a 
superposition of passing through it and outside of it may be quite 
a different matter. Suppose, for example, that such a box is inserted 
in the soft path of our two-path device at (xJ.s, y1). Then, if the 
initially input electron was white, the state at tz will be, as above, 
(2.51), and the state at t3 (after the "passage" through the box) will 
be not (2.52) but, rather, 

(The sign of the second term is changed, relative to (2.52), by the 
passage through the box.) The same reasoning as led from (2.52) 
to (2.53) will now imply that the color of the electron at t4 is, with 
certainty, black. 

Field Theory 

There's just one more thing that it will turn out to be convenient 
(a good deal later on) to have mentioned here. 

It has to do with adjusting the quantum-mechanical formalism 
so as make it consistent with special relativity. 

It turns out that this adjustment doesn't require any change at 
all in principles (A)-(D). What needs to be changed is the funda­
mental ontology of the world. What you have to do is give up the 
idea that the material world consists of particles (since it turns out 
that a relativistic quantum theory of particles, a theory which 
satisfies (A)-(D), just can't be cooked up) and adopt the idea that 
it consists of something else. Here's the general idea: 

What goes on in relativistic quantum theories is that one im­
agines that there is an infinitely tiny physical system permanently 
located at every single mathematical point in the entirety of space; 
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one imagines (that is) that there is literally an infinite array of such 
systems, one for each such point. And each one of those infinitely 
tiny systems is stipulated to be a quantum-mechanical system. And 
each one of them is stipulated to interact in a particular way with 
each of its neighbors.13 And the complete array of them is called 
the field. 

And it turns out that a relativistic quantum theory of the field (a 
theory which satisfies (A)-(D)) can be cooked up; moreover, that 
theory can be cooked up in such a way as to guarantee that the 
familiar quantum-mechanical observables of the material world 
(that is: the observables of "particles") can for the most part be 
reinterpreted there as observables of the field. For example, state­
ments about the number of particles in a given region of space, or 
about the kinds of particles in that region, or about the physical 
states of the particles in that region, will all turn into statements 
about the quantum states of the infinitely tiny field systems in that 
region. And as a matter of fact, it can be shown that what the 
nonrelativistic limit of this theory amounts to is precisely the non­
relativistic quantum theory of particles which was outlined in the 
section above on coordinate space and which most of this book is 
going to be about. 

13. Or you could put it this way: What goes on in relativistic quantum theories 
is that one imagines that every single mathematical point in space is itself a 
quantum-mechanical system; and that each one of them interacts in a particular 
way with its neighbors. 



. . . 3 ... 

Non locality 

A famous attempt to escape from the standard way of thinking 
about quantum mechanics was initiated in the 1930s by Einstein 
and Podolsky and Rosen, and had a surprising aftermath, in the 
sixties, in the work of Bell, and that (Bell's work) is what this 
chapter will mostly be about. 

But first let me describe the escape attempt itself. In 1935, Ein­
stein, Podolsky, and Rosen (who have since then come to be known 
as "EPR") produced an argument, which was supposed to open the 
way to that escape, that (if the predictions of quantum mechanics 
about the outcomes of experiments are correct) the quantum­
mechanical description of the world is necessarily incomplete. 

Here's what they meant by "completeness": a description of the 
world is complete, for them, just in case nothing that's true about 
the world, nothing that's an "element of the reality" of the world, 
gets left out of that description. 

Of course, that entails that if we want to find out whether or not 
a certain description of the world is complete, we need first to find 
out what all the elements of the reality of the world are; and it turns 
out (not surprisingly!) that EPR had nothing whatever to offer in 
the way of a general prescription for doing that. What they did 
(which is something much narrower, but which turns out to be 
enough for their purposes) is to write down a merely sufficient 
condition for a measurable property of a certain system at a certain 
moment to be an element of the reality of that system at that 
moment. The condition is that "if, without in any way disturbing 
a system, we can predict with certainty (i.e., with probability equal 
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to unity) the value of a physical quantity, then there exists an 
element of reality corresponding to this physical quantity." 

Let's see what this condition amounts to. Consider a question 
like this: If a measurement of a certain particular observable (call 
it 0) of a certain particular physical system (call it S) were to be 
carried out at a certain particular future time (call itT), what would 
the outcome be? Suppose that there is a method whereby I can put 
myself in position, prior to T, to answer that question, with cer­
tainty. And suppose that the method whereby I can put myself in 
that position involves no physical disturbance of S whatsoever. 
Then (according to EPR) there must now already be some matter 
of fact about what the outcome of a future 0 measurement on S 
would be; there must now already be some fact about S (since the 
facts about S aren't going to get tampered with from the outside in 
the course of my putting myself in a position to answer the question 
about the 0 measurement) in virtue of which that future measure­
ment would come out in that particular way.1 

So, what EPR want to argue (once again) is that if the empirical 
predictions of quantum mechanics are correct, then there must be 
elements of the reality of the world which have no corresponding 
elements in the quantum-mechanical description of the world. They 

1. Here are two particularly trivial examples. Suppose I have just now measured 
the color of some particular electron. Having done that measurement (since mea­
surements of color are repeatable) puts me in a position to predict, with certainty, 
what the outcome of a measurement of the color of that electron at a later time 
would be, if such a measurement were to be carried out; and of course making such 
a prediction need not involve any further interaction with the electron at all. So the 
EPR reality condition entails that color must at present be an element of the reality 
of this electron; and of course that's also precisely what the quantum-mechanical 
formalism and the standard way of thinking entails. 

Suppose, on the other hand, that I have just now measured the hardness of an 
electron. In order to be able to predict with certainty what the outcome of a future 
measurement of the color of that electron would be (if such a measurement were 
to be carried out), I would need to measure the color of that electron (I would need, 
that is, to interact with it, potentially to disturb it); and so the EPR reality condition 
doesn't entail that color is an element of the reality of this electron at present; and 
that's in accordance with the quantum-mechanical formalism and the standard way 
of thinking too. 
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want to use quantum mechanics, sort of paradoxically, against 
itself. 

The argument goes something like this: 
Consider a system consisting of two electrons. Electron 1 is 

located at position 1, and electron 2 is located at position 2. The 
spin-space state of these two electrons is the following (nonsepara­
ble) one: 

(3.1) lA) = Vv'llblack)tlwhite}l - lfv'21white)tlblack)2 

lA), like any quantum state, is necessarily an eigenstate of some 
complete observable of this pair of electrons. Call that observable 
OA, and suppose that OAIA) = lA). Now, lA) has been written down 
in equation (3.1) in the color basis, but it happens to be an extraor­
dinary mathematical fact about this particular state that (as the 
reader can explicitly verify for herself, by means of equation (2.21)) 
this state has precisely the same form if it's written down in the 
hardness basis. That is: 

(3.2) lA) = Vv'llhard)tlsoft)l - Vv'llsoft)tlhard)l 

And as a matter of fact it turns out that lA) retains precisely the 
same mathematical form if color (in equation (3.1)) or hardness (in 
equation (3.2)) is replaced by gleb or by scrad (which were defined 
in Chapter 2) or by any one of the continuous infinity of electron 
spin-space observables whatsoever. 

Focus first on equation (3.1). Suppose that we were to carry out 
a measurement of the color of electron 1. The outcome of that 
measurement will be either "black" or "white," with equal proba­
bility (that follows from the rules for calculating probabilities for 
two-particle systems).2 Moreover, quantum mechanics entails (and 
it is experimentally known to be true) that in the event that the 
outcome of that measurement is "black," then the outcome of any 
subsequent measurement of the color of electron 2 will necessarily 

2. See equation (2.38). 
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be "white," and in the event that the outcome of that measurement 
on particle 1 is "white," then the outcome of any subsequent 
measurement of particle 2 will necessarily be "black" (all of that 
follows from the collapse postulate for two-particle systems).3 

EPR assumed (and this is the only assumption that enters into 
their argument other than the assumption that the predictions of 
quantum mechanics about the results ~ents are correct; 
and the name of this other assumptior{islocal~at things could 
in principle be set un in such a \ky-as to guarantee that the 
measurement of the color of electron 1 roduces no h s · al dis­
tor ance whatsoever in electron 2. That seemed almost self-evident. 
There seemed to be any number of ways to do it: you could, for 
example, separate the two electrons by some immense distance 
(since quantum mechanics predicts that none of what's been said 
here depends on how far apart the two electrons happen to be), or 
you could insert an impenetrable wall between them or build im­
penetrable shields around them (since quantum mechanics predicts 
that none of what's been said depends on what happens to lie 
between or around those two electrons), or you could set up any 
array of detectors you like in order to verify that no measurable 
signals ever pass from one of the electrons to the other in the course 
of the experiment (since quantum mechanics predicts that no such 
array, in such circumstances, whatever sorts of signals it may be 
designed to detect, will ever register anything).4 

So, returning to (3.1): whenever jA) obtains, there is a means of 
predicting, with certainty, and (in principle, if locality is true, and 
if you set things up right) without disturbing electron 2, what the 
outcome of any subsequent measurement of the color of electron 

3. See, in particular, equations (2.45) and (2.46). 
4. Let's say a little more about precisely what the locality assumption amounts 

to: the assumption says that I can't punch you in the nose unless my fist gets to 
where your nose is. 

Of course, something I do with my fist far from where your nose is can cause 
some other fist which is near where your nose is to punch you in the nose (some­
thing I do with my fist might be a signal to somebody else to punch you in the nose, 
for example); the assumption is just that if my fist never gets anywhere near your 
nose then I can't punch you in the nose directly, then it can't be my fist that punches 
you in the nose. And if something I do with my fist far from where your nose is is 
the cause of your getting punched in the nose, then (on this assumption) there must 
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2 will be. The way to do that is to measure the color of electron 1; 
since it's known that the outcome of any measurement of the color 
of electron 2 will invariably be the opposite of the outcome of any 
measurement of the color of electron 1. And so it follows from the 
reality condition that color must necessarily be an element of the 
reality of electron 2, that there must necessarily be a matter of fact 
about what the value of the color of electron 2 is, whenever lA) 
obtains. 

Now focus on equation (3.2). Repeat precisely the same argu­
ment, with color replaced by hardness. It follows that whenever lA) 
obtains, there is a means of predicting, with certainty, and without 
disturbing electron 2, what the outcome of any subsequent mea­
surement of the hardness of electron 2 will be (the way to do that 
is to measure the hardness of electron 1). And so it follows from 
the reality condition that the hardness of electron 2 is also neces­
sarily an element of the reality of that particle whenever lA) obtains. 

And so the standard way of thinking must simply be false, since 
there can be circumstances (like lA)) in which there are simulta­
neously matters of fact about the values of both the color and the 
hardness of a single electron, even though those two observables 
are supposed to be incompatible. 

necessarily be some causal sequence of events at contiguous points in space and at 
contiguous moments in time (the propagation of a signal, say) stretching all the 
way without a break from whatever it was that I did with my fist to your being 
punched in the nose. And of course the capacity of any such sequence of events to 
occur (the capacity, that is, of my fist to cause you to be punched in the nose) will 
necessarily depend on what sorts of physical conditions obtain in the space between 
my fist and your nose (it may, for example, depend on the absence of opaque walls, 
or of radio-wave absorbers, or what have you). And that sequence of events (in 
virtue of being a sequence, in virtue of being a string of causes whose effects are 
new causes whose effects are new causes ... ) must necessarily require some finite 
time to completely unfold. 

And as a matter of fact the special theory of relativity entails that the velocities 
at which physical influences can be propagated through space by means of such 
sequences of neighboring events cannot possibly exceed the velocity of light (be­
cause otherwise there couldn't be any matter of objective fact about what the 
sequence of those events is); and that, of course, entails that there is yet another 
method (which the reader can now easily concoct for herself) of setting things up 
in such a way as to guarantee that the measurement of the color of electron 1 has 
no effect whatever on the outcome of the measurement of the color of electron 2. 
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Moreover, the formalism itself (quite apart from any particular 
way of thinking about it) must necessarily be incomplete, since 
there are necessarily certain facts, certain elements of the physical 
reality of the world, which have no corresponding elements in the 
formalism. There are facts about the color and the hardness of 
electron 2, for example, when lA) obtains, but there isn't anything 
in the mathematical description of the state lA), in this formalism, 
from which the values of the color or the hardness of electron 2 
can be read off. 

And since lA) retains its mathematical form in every basis, the 
same argument can be rehearsed in all of them, and so, when lA) 
obtains, there must necessarily simultaneously be matters of fact 
about the values of every spin-space observable of electron 2; and 
so the standard way of thinking must be (as it were) infinitely false, 
and the formalism must be infinitely incomplete. 

And of course precisely the same arguments can be made about 
electron 1. 

If all this is right, then whenever lA) obtains, all of the continuous 
infinity of spin observables are simultaneously elements of the 
realities of both of the electrons in question. And if that's so, then 
the statement that lA) obtains necessarily constitutes a very incom­
plete description of the state of a pair of electrons. The statement 
that lA) obtains must be true of a gigantic collection of different 
"true" states of the pair, in some of which, say, electron 1 is black 
and soft and scrad = -1 (and so on) and electron 2 is white and 
hard and scrad = +1 (and so on), and in others of which electron 
1 is black and soft and scrad = +1 (and so on) and electron 2 is 
white and hard and scrad = -1 (and so on), and so on. 

Nonetheless, the information that lA) obtains must certainly 
constrain the "true" state of a pair of electrons in a number of 
ways, since the outcomes of spin measurements on such pairs of 
electrons are (after all) determined by what their "true" states are, 
and since we're assuming that the quantum-mechanical predictions 
about the statistics of the outcomes of such measurements are 
correct. 

Let's see what sorts of constraints arise. First of all, if lA) obtains 
(if, that is, the outcome of a measurement of OA is +1), then the 
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outcome of a measurement of any spin-space observable of electron 
1 will necessarily be the opposite of the outcome of any measure­
ment of the same observable on electron 2. Whenever lA) obtains, 
then, the "true" state of the pair of electrons in question is con­
strained, with certainty, to be one in which the value of every 
spin-space observable of electron 1 is the opposite of the value of 
that same observable of electron 2. 

There are statistical sorts of constraints, too. Those are a bit 
more complicated: Suppose that lA) obtains, and suppose, for ex­
ample, that we were to measure the color of electron 1 and then 
the scrad of electron 2. There will be four possible outcomes: black 
(color = +1) and scrad = - 1, white (color = -1) and scrad = 
+ 1, black and scrad = + 1, and white and scrad = -1. Consider 
the first two, in both of which the value of the color of electron 1 
is the opposite of the value of the scrad of electron 2. Let's calculate 
(in the way that we're instructed to by the quantum-mechanical 
formalism) the probability that the outcome of such an experiment 
would be either one of those. Initially lA) obtains. Then a measure­
ment of the color of electron 1 is carried out. That measurement 
(in accordance with the probability rules and the collapse postulate 
for two-particle systems, which were both described in Chapter 2) 
will change the quantum state of this pair of electrons to either 
lblack)llwhite)2 or lwhitehlblack)z, with equal probabilities. In the 
first case (in the event, that is, that the outcome of the color 
measurement on electron 1 is "black"), the probability that the 
outcome of the scrad measurement on electron 2 is -1 is 
l(whitelscrad = -1)12 = 1/4. In the second case (in the event, that 
is, that the outcome of the color measurement on electron 1 is 
"white"), the probability that the outcome of the scrad measure­
ment on electron 2 is +1 is J(blacklscrad = +1)12 = 1/4. Since the 
two possible outcomes of the color measurement of electron 1 are 
equally probable, it follows that the overall probability that the 
outcome of the color measurement of electron 1 is the opposite of 
the outcome of the scrad measurement of electron 2, when lA) 
obtains, is V4. 

And as a matter of fact, it turns out that if lA) obtains, and if 
either color or scrad or gleb are measured on both electrons, and 
if the observable that gets measured on electron 1 isn't the same 
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observable as the one that gets measured on electron 2, then the 
quantum-mechanical probability that the outcome of the measure­
ment on electron 1 is the opposite of the outcome of the measure­
ment on electron 2 is always exactly V4. 

And that will amount to a constraint on the relative frequencies 
of various different "true" states of pairs of IA)-type electrons, 
which runs as follows: Consider a large collection of pairs of 
electrons, each of which (each pair, that is) is known to have the 
property that 0 A = + 1. Pick any two of the three observables color, 
scrad, gleb. Call one P and the other Q. One-quarter (statistically) 
of the pairs of electrons in any such large collection will have to 
have the property that the value of P for electron 1 is the opposite 
of the value of Q for electron 2, and the remaining three-quarters 
of the pairs will have to have the property that the value of P for 
electron 1 is the same as the value of Q for electron 2. 

And now (here comes the punch line) a well-defined question can 
be posed as to whether these two constraints (the deterministic 
constraint about the values of identical observables for the two 
electrons, and the statistical constraint about the values of different 
observables for the two electrons) are mathematically consistent 
with one another. It was Bell who first clearly posed and answered 
that question, twenty-nine years after the publication of the EPR 
argument (Bell, 1964 ); and it turns out that the answer to that 
question is no.5 

l And so the conclusion of the EPR argument is logically impossi­
\ ble; and so either locality must be false or the predictions of quan-

5. Here's why: Consider (to begin with) a collection of pairs of electrons which 
satisfies the deterministic constraint. In each of the pairs in any collection like that, 
the color value of electron 1 has to be the opposite of the color value of electron 
2, and the scrad value of electron 1 has to be the opposite of the scrad value of 
electron 2, and the gleb value of electron 1 has to be the opposite of the gleb value 
of electron 2. Now, it turns out (as the reader can easily verify for herself) that 
there are exactly eight different ways in which values of color and gleb and scrad 
can possibly be assigned to a pair of electrons such that everything in the last 
sentence is true. 

An explicit inspection of those eight possible assignments (which the reader can 
also easily accomplish on her own) will show that every single one of them (which 
is to say: every single one of the pairs of electrons in any collection of pairs of 
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tum mechanics about the outcomes of spin measurements on !A)­
states must be false (since those are the only two assumptions on 
which the argument depends); and it happens that those predictions 
are now experimentally known to be true; and so the assumption 
that the physical workings of the world are invariably local must 
(;stonishingly) be false. 

Here's another way to tell the story: 
Einstein, Podolsky, and Rosen noticed that there was something 

odd about the collapse postulate for two-particle systems. They 
noticed that it was nonlocal: if the two particles are initially in a 
nonseparable state, then a measurement carried out on one of them 
can bring about changes, instantaneously, in the quantum-mechan­
ical description of the other one, no matter how far apart those two 
particles may happen to be or what might lie between them. 

Consider, for example, a pair of electrons, and suppose that lA) 
initially obtains and that a measurement of the color of electron 1 
is carried out. The outcome of that measurement (as we've seen) 
will be either "black" or "white," with equal probabilities. The 
collapse postulate for two-particle systems entails that as of the 
instant that that measurement is over, the state of electron 2 will 
be either !white) (in the event that the outcome of the measurement 
on electron 1 was "black") or jblack) (in the event that the outcome 
of the measurement on electron 1 was "white"). 

electrons whatever which satisfies the deterministic constraint) either has the prop­
erty that the color value of electron 1 is the opposite of the gleb value of electron 
2, or else it has the property that the color value of electron one is the opposite of 
the scrad value of electron 2, or else it has the property that the gleb value of 
electron 2 is the opposite of the scrad value of electron 2. 

But note that in any collection of pairs of electrons which satisfies the statistical 
constraint, the fraction of the pairs which have the first one of the properties 
described in the last paragraph has got to be lA, and the fraction of the pairs which 
have the second one of those properties has also got to be l/4, and the fraction of 
the pairs which have the third one of those properties has also got to be lf4; and 
so the fraction of the pairs of electrons which has any one of those three properties 
has got to be less than or equal to 3/4. 

And so no collection of pairs of electrons whatever can possibly satisfy both the 
statistical constraint and the deterministic one. Period. 
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EPR suspected that this nonlocality must merely be a disposable 

artifact of this particular mathematical formalism, of this particular 
procedure for calculating the statistics of the outcomes of experi­
ments; and that there must be other (as yet undiscovered) such 
procedures, which give rise to precisely the same statistical predic­
tions but which are entirely local. 

And it emerged thirty years later, in the work of Bell, that that 
suspicion was demonstrably wrong. 

Bell's work is sometimes taken to amount to a proof that any 
attempt to escape from the standard way of thinking, any attempt 
to be realistic about the values of the spin observables of a pair of 
electrons for which lA) obtains, must necessarily turn out to be 
nonlocal. But (and this is the point of telling the story this way) 
things are actually a good deal more serious than that. What Bell 

~ -as given us is a proo t at ere IS as a matter of fact, a genuine 
nonlocali in the actual workings df nature, however we attempt 
l'n'=~I::CI"ifhe it, period. That nonlocality is, t~ begin with. a feature 
of quantum mechanics itself, and it turns out (via Bell's theorem) 
that it is necessarily also a feature of every possible manner of 
calculating (without or with superpositions) which produces the 
same statistical predictions as quantum mechanics does; and those 
predictions are now experimentally known to be correct. 

Let's be somewhat more precise about just what sort of nonlocality 
quantum mechanics exhibits. 

First of all, when lA) obtains, the statistics of the outcomes of 
spin measurements on electron 2 depend nonlocally (as we've seen) 
on the outcomes of spin measurements on electron 1, and vice 
versa. But consider whether or not the statistics of the outcomes of 
spin measurements on electron 2, when lA) obtains, depend non­
locally on whether a spin measurement is first carried out on 
electron 1 (and vice versa). 

Let's figure it out. Suppose that lA) obtains, and suppose, to begin 
with, that a measurement of color is carried out on electron 2. Well, 
it follows from equation (3.1), and from the standard quantum­
mechanical rules for calculating the probabilities of measurement 
outcomes, that the outcome of that measurement is equally likely 
to be "black" or "white." And now suppose that lA) obtains and 
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that a measurement of the color of electron 1 is carried out, and 
then a measurement of the color of electron 2 is carried out. Well, 
the measurement of the color of electron 1 is now (for precisely the 
same reasons) equally likely to come out "black" or "white," In 
the event that it comes out "black" it follows from the collapse 
postulate for two-particle systems that the subsequent measure­
ment of the color of electron 2 will come out "white," and in the 
event that it comes out "white" it follows from the collapse postu­
late for two-particle systems that the subsequent measurement of 
electron 2 will come out "black." So, when JA) obtains, the out­
come of a measurement of the color of electron 2 is equally likely 
to be "black" or "white" whether or not a measurement of the 
color of electron 1 is carried out first. 

Now suppose that JA) obtains and that a measurement of the 
hardness of electron 1 is carried out, and then a measurement of 
the color of electron 2 is carried out. It follows from equation (3.2), 
and from the probability rules, that the outcome of the hardness 
measurement on electron 1 is equally likely to be "hard" or "soft." 
Now, in the event that the outcome of that first measurement is 
"soft," it follows from the collapse postulate and from the proba­
bility rules that the outcome of the second measurement (the color 
measurement on electron 2) is equally likely to be "black" or 
"white." And the same thing is true in the event that the outcome 
of the first measurement is "hard." And so here's where we are so 
far: when JA) obtains, the outcome of a measurement of the color 
of electron 2 is equally likely to be "black" or "white," whether a 
measurement of the color of electron 1 is carried out first, or a 
measurement of the hardness of electron 1 is carried out first, or 
no measurement on electron 1 is carried out first. 

And everything that's been said here is also true if "color" and 
"hardness" are interchanged, or if either or both of them are 
replaced by "gleb" or by "scrad" or by any of the other spin 
observables; and everything that's been said here is of course also 
true if "electron 1" is exchanged with "electron 2." You can extend 
this kind of argument to other sorts of observables and to other 
sorts of physical systems, too. 

And if you follow this sort of thing out as far as you can, here's 
where you end up: Take any composite physical systemS. Divide 



NON LOCALITY 

72 

it up, any way you like, into two (possibly still composite) subsys­
tems. Call those two subsystems Stand Sz. Take any quantum state 
whatsoever, IQ), of S. Choose any observable 01 of St and any 
observable Oz of sz. It's possible to prove the following completely 
general theorem: Whenever IQ) obtains, the probabilities of the 
various possible outcomes of a measurement of Oz don't depend at 
all on whether or not a measurement of 01 is carried out first. 

So, there are (for the nth time) nonlocal influences in nature (if 
the relevant predictions of quantum mechanics are right; and they 
are right); but those influences are invariably of a particularly subtle 
kind. The outcomes of measurements do sometimes depend non­
locally on the outcomes of other, distant, measurements; but the 
outcomes of measurements invariably do not depend nonlocally on 
whether any other, distant, measurements get carried out! 

Let me put it another way (and this is really the punch line of 
this little section). The subtlety of these influences is such that (even 
though they surely exist, even though the statistics of the outco~ 
of experiments can't be understood without them) they cannot 

~ possibly be exploited to transmit a detectable signal, they cannot .r possibly be made to carry information, nonlocally, between any 
two distant points. The problem is that it just won't work to encode 
the information you want to transmit in a decision to make a 
measurement or not to make one, or in a decision about what to 
make a measurement of, since (as we've just seen) no such decisions 

l =-- ~ can ever have detectable nonlocal effects; and there just isn't any 
' way to encode the information you want to transmit in the outcome 

of an appropriate sort of experiment (in, say, the outcome of a 
measurement of the color of electron 1, when lA) obtains), since, 
as a matter of principle, the outcomes of such measurementsare 
necessaril entirely beyond our control; and all of the rest of quan­
tum mechanics, the arts t at e · eactions of h sical 
s stems to eve hin other th measurements at is: the dynam-

f{ f$ · ~ ical equations of motion , are, s ar-as-we ow, absolutely local 
~ from start to finish. 

There will be a good deal more to say of all this later on. 
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Now I want to begin to worry in earnest about whether or not the 
dynamics sa s in as the ostulate of collapse says about 
w at happens to the state vector of a p ysica system w en t e 
system gets measured. Here's what looked worrisome back in 
Chapter 2: the dynami<;:s (which is supposed to be about how the 
state vectors of physical systems evolve in general) is fully deter­
ministic, but the collapse postulate (which is supposed to be about 
how the state vector of a system evolves when it comes in contact 
with a measuring device) isn't; and so it isn't clear precisely how 
the two can be consistent. -

Let's figure out what the dynamics says about what happens when 
things get measured. 

Suppose that everything in the world always evolves in accor­
dance with the dynamical equations of motion. And suppose that 
we have a device (which operates in accordance with those equa­
tions, just like everything else does) for measuring the hardness of 
an electron; and suppose that that device works like this: The device 
has a dial on the front, with a pointer; and the pointer has three 
possible positions. In the first position the pointer points to the 
word "ready," and in the second position it points to the word 
"hard," and in the third it points to the word "soft." Electrons are 
fed into one side of the device and come out the other, and in the 
course of passing through (if the device is set up right, with the 
pointer initially in its "ready" position) they get their hardnesses 
measured, and the outcomes of those measurements get recorded 
in the final position of the pointer (figure 4.1). 
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If the device is set up right, and if the dynamics is always true, 

then (to put all this another way) the dynamical equations of 
motion entail that it behaves like this: 

(4.1) lready)mlhard). -7 l"hard")mlhard), 

and 

(4.2) lready)mlsoft). -7 l"soft")mlsoft). 

That is: if the device (whose state vector is labeled with subscript 
m) is initially in the ready state, and if an electron (whose state 
vector is labeled with subscript e) that is hard gets fed through it, 
then the device ends up in the state wherein the pointer is pointing 
at "hard"; and if the device is initially in the ready state, and if a 
soft electron gets fed through it, then the device ends up in the state 
wherein the pointer is pointing at "soft." That's what it means for 
a measuring device for hardness to be a good one and to be set up 
right. 

Now (still supposing that the dynamics is always true), consider 
what happens if this device (the one for measuring hardness) is set 
up right, and is in its ready state, and a black electron is fed into 
it. It turns out that (4.1) and (4.2), and the fact that the dynamical 
equations of motion are invariably linear, suffice by themselves to 
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figure that out: The initial state of the electron and the measuring 
device is 

(4.3) lready)mlblack), = lready)m{ll~hard), + V~soft),} 
= 11-Jijready)mlhard), + 11-Jijready)mlsoft), 

which is precisely V-ff times the initial state in ( 4.1) plus V-ff times 
the initial state in (4.2). So, since (by hypothesis) the dynamical 
equations of motion entail that !ready)m!hard), evolves as in (4.1) 
and that !ready)m!soft), evolves as in (4.2) (that is: since this device 
is set up right, and since it's a good measuring device for hardness), 
it follows from the linearity of those equations that the state in 
(4.3), when the measuring device gets switched on, will necessarily 
evolve into 

(4.4) Vv'21"hard")mlhard), + Vv'21"soft")mlsoft), 

That's how things end up, with certainty, according to the dynam­
ics.1 

And the way things end up according to the postulate of collapse 
(when you start with (4.3)) is 

(4.5) either l"hard")mlhard), (with probability li2.) 

or l"soft")mlsoft), (with probability li2.) 

1. This result often strikes people as mysteriously easy. The intuition is that 
measuring devices for hardness like the one described here must be extremely 
complicated contraptions (especially if you look at them on the level, say, of their 
constituent atoms) and must have extremely complicated equations of motion, the 
solution of which must bP- an extremely complicated matter. All of that is true. 
What simplifies things here is the fact that however complicated those equations 
may be, (4.1) and (4.2) are surely solutions of them (since the contraption we're 
dealing with is, by hypothesis, and whatever else it may be, a good measuring device 
for the hardness of an electron), and they (the equations) are surely linear; and 
those two facts are enough by themselves to insure that if a black electron is fed 
into the device, then those equations will entail that things will end up in the state 
in (4.4). 



THE MEASUREMENT PROBLEM 

76 

And the trouble is that (4.4) and (4.5) are ·measurably different 
situations.2 

The state described in (4.5) is the one that's right; it is (as a matter 
of empirical fact) how things do end up when you start with (4.3). 

The state described in (4.4) is not how things end up;3 (4.4) is 
something very strange. It's a superposition of one state in which 
the pointer is pointing at "hard" and another state in which the 
pointer is pointing at "soft"; it's a state in which (on the standard 
way of thinking) there is no matter of fact about where the pointer 
is pointing. 4 

Let's make this somewhat sharper. Suppose that a human observer 
enters the picture, and looks at the measuring instrument (when 
the measurement is all done) and sees where the pointer is pointing. 
Let's figure out what the dynamics will say about that. 

Suppose, then (just as we did before), that literally every physical 
system in the world (and this now includes human beings; and it 

2. Perhaps this ought to be expanded on a bit. The point is that there are (in 
accordance with the postulates of quantum mechanics that were laid out in Chapter 
2) necessarily measurable properties of the state in (4.4) whereby it can, in principle, 
be experimentally distinguished from either of the states in (4.5) and, as a matter 
of fact, from any other state whatever. There will be a good deal to say, later on, 
about precisely what those properties are (they're complicated ones, and their 
measurement will in general be extremely difficult); what's important for the mo­
ment is simply that those properties exist. 

3. It isn't, at any rate, according to the conventional wisdom about these matters; 
but there will be much more to say about this later on. 

4. Something ought to be mentioned in passing here, something that will turn 
out to be important later on. 

What we've just discovered is that there is a certain fundamental effect of the 
carrying out of a measurement (namely: the emergence of some definite outcome 
of the measurement; the emergence of some matter of fact about precisely what the 
outcome of the measurement is) which is not predicted by the dynamical equations 
of motion. 

But consider another effect of the carrying out of a measurement, one which we 
first described in the course of our discussions of hardness and color in Chapter 1: 
The carrying out of a measurement is disruptive of the values of observables of the 
measured system which are incompatible with the observable that gets measured. 
It turns out that the dynamical equations of motion do predict that. 
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includes the brains of human beings) always evolves in accordance 
with the dynamical equations of motion; and suppose that a black 
electron is fed through a measuring device for hardness that's set 
up right and that starts out in its ready state (so that the state of 
the electron and the device is now the one in (4.4)); and suppose 
that somebody named Martha comes along and looks at the device; 
and suppose that Martha is a competent observer of the positions 
of pointers. 

Being a "competent observer" is somethin like bein a measur­
ing device t at's set up right: What it means for Martha to be a 
competent observer of the position of a pointer is that whenever 
Martha looks at a pointer that's pointing to "hard," she eventually 
comes to believe that the pointer is pointing to "hard"; and that 
whenever Martha looks at a pointer that's pointing to "soft," she 
eventually comes to believe that the pointer is pointing to "soft" 
(and so on, in whatever direction the pointer may be pointing). 
What it means (to put it somewhat more precisely) is that the 
dynamical equations of motion entail that Martha (who is a phys­
ical system, subject to the physical laws) behaves like this: 

(4.6) jready)olready)m ~ l"ready")olready)m 

and 
jready)oj"hard")m ~ l"hard")ol"hard")m 

and 

lready)ol"soft")m ~ l"soft")ol"soft")m 

In these expressions, Jready)o is that physical state of Martha's brain 
in which she is alert and in which she is intent on looking at the 

Look, for example, at the evolution from (4.3) to (4.4). Equation (4.3) is an 
eigenstate of the color of the electron whose hardness is about to be measured; but 
(4.4) (which is the state following the interaction of the electron with a good 
measuring device for the hardness, according to the equations of motion) isn't. If 
(4.4) is written out in terms of eigenstates of the color of the electron (which the 
reader can now easily do), it turns out to be a superposition of two states (with 
equal coefficients), in one of which the electron is black and in the other of which 
the electron is white. 
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pointer and finding out where it's pointing; l"ready")o is that phys­
ical state of Martha's brain in which she believes that the pointer 
is pointing to the word "ready" on the dial; l"hard")o is that 
physical state of Martha's brain in which she believes that the 
pointer is pointing to the word "hard" on the dial; and l"soft")o is 
that physical state of Martha's brain in which she believes that the 
pointer is pointing to the word "soft" on the dial.5 

Let's get back to the story. The state of the electron and the 
measuring device (at the point where we left off) is the strange one 
in (4.4). And now in comes Martha, and Martha is a competent 
observer of the position of the pointer, and Martha is in her ready 
state, and Martha looks at the device. It follows from the linearity 
of the dynamical equations of motion (if those equations are right), 
and from what it means to be a competent observer of the position 
of the pointer, that the state when Martha's done is with certainty 
going to be 

V-al" hard ")ol" hard ")mlhard), + V-al "soft")ol "soft")misoft), 

) 
That's what the dynamics entails. 
And of course what the postulate of collapse entails is that when 

Martha's all done, then 

~ either l"hard")ol"hard")mlhard), (with probability 1!2.) 

or l"soft")ol"soft")misoft), (with probability 112.) 

5. It hardly needs saying that this is an absurdly oversimplified description of 
Martha's brain, and that this is an absurdly oversimplified account of the ways in 
which mental states are generally supposed to supervene on brain states; but all 
that turns out not to make any difference (not at this stage of the game, anyway). 
We can fill in the details whenever we want, to whatever extent we want. They 
won't change the arguments. 
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by direct introspection. It's a superposition of one state in which 
Martha thinks that the pointer is pointing to "hard" and another 
state in which Martha thinks that the pointer is pointing to "soft"; 
it's a state in which there is no matter of fact about whether or not 
Martha thinks the pointer is pointing in any particular direction. 6 

And so things are turning out badly. The dynamics and the postu­
late of collapse are flatly in contradiction with one another (just as 
we had feared they might be); and the postulate of eems 
to be ri ht about what hap ens when we make easurements, and 
the dynamics seems to be bizarrely wrong a _al'm:Qs 
when we make measurements; and yet the dynamics seems to be 
right about what happens whenever we aren't makin~easur(:!­
ments; and so the whole thing is very confusing;_ and the problem 
OTWiiat to do about all this has come to be called "the problem of 
measurement." 

We shall be thinking about that for the rest of this book. 

6. This isn't anything like a state in which Martha is, say, confused about where 
the pointer is pointing. This (it deserves to be repeated) is something really strange. 
This is a state wherein (in the language we used in Chapter 1) it isn't right to say 
that Martha believes that the pointer is pointing to "hard," and it isn't right to say 
that Martha believes that the pointer is pointing to "soft," and it isn't right to say 
that she has both of those beliefs (whatever that might mean), and it isn't right to 
say that she has neither of those beliefs. 



. . . 5 ... 

The Collapse of the Wave Function 

The Idea of the Collapse 

The measurement problem was first put in its sharpest possible 
form in the 1930s, by John von Neumann, in an extraordinary 
book called Mathematical Foundations of Quantum Mechanics 
(von Neumann, 1955). It looked to von Neumann as though the 
only thing that could possibly be done about the measurement 
problem was to bite the bullet, and admit that the dynamics is 
simply wrong about what happens when measurements occur, and 
nonetheless right about everything else. And so what he concluded 
was that there must be two fundamental laws about how the states 
of quantum-mechanical systems evolve: 

I. When no measurements are going on, the states of all physical 
systems invariably evolve in accordance with the dynamical 
equations of motion. 

II. When there are measurements going on, the states of the 
measured systems evolve in accordance with the postulate of 
collapse, not in accordance with the dynamical equations of 
motion. 

But this clearly won't do. Here's the trouble: What these laws 
actually amount to (that is: what they actually say) will depend on 
the precise meaning of the word measurement (because these two 
laws entail that which one of them is being obeyed at any given 
moment depends on whether or not a "measurement" is being 
carried out at that moment). And it happens that the word mea-

80 
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surement simply doesn't have any absolutely precise meaning in 
ordinary language; and it happens (moreover) that von Neumann 
didn't make any attempt to cook up a meaning for it, either. 

And so those laws, as von Neumann wrote them down, simply 
don't determine exactly how the world behaves (which is to say: 
they don't really amount to prospective fundamental "laws" at all). 

And there has consequently been a long tradition of attempts to 
figure out how to write them down in such a way that they do. 

Here's where things stand: Suppose that a certain system is initially 
in an eigenstate of observable A, and that a measurement of ob­
servable B is carried out on that system, and that A and B are 
incompatible with one another. What we know with absolute cer­
tainty, by pure introspection, is that by the time that measurement 
is all done, and a sentient observer has looked at the measuring 
device and formed a conscious impression of how that device 
presently appears and what it presently indicates, then some wave 
function must already have violated the dynamical equations of 
motion and collapsed. What we need to do is to figure out precisely 
when that collapse occurs. 

Let's try to guess. -l~ / 
Perhaps the collapse always_o~urs precisely at the last possible l ~ 

mo ha s (that is it alwa s occurs recisel at the level of 
onsciousnes ,I and perhaps, moreover, consciousness is always the 

a · --hat brings it about. 
Put off the temptation to dismiss this as nonsense just for long 

enough to see what it amounts to. 
On this proposal (which is due to ~igner, 1961), the correct laws 

of the evolution of the states of physical systems look something 
like this: All physical objects almost always evolve in strict accor­
dance with the dynamical equations of motion. ~ut every now and 
then, in the course of some such dynamical evolutions (in the course 

1. This isn't a way of saying that there's anything illusory about the collapse; 
it's just a way of saying at precisely what point the collapse (which is a physical 
process) occurs, a way of saying precisely what sorts of processes precipitate 
collapses. 
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of measurements, for example), the brain of a sentient being may 
e~ter a state wherein (as we've seen) states connected wirti vanous 

. different co · us ex eriences are su er osed; and at such mo-
A"t" i~ 1~ ments, mind onnected with that brain (as it were) opens its 
I v' ~ \jnner eye, gazes on that brain, and that causes the entire system 
. ti"Ji n (brain, measuring instrument, measured system, everything) to col-
'11"l fapse, with the usual quantum-mechanical probabilities, onto one 

I or another of those states;2 and then the eye closes, and everything 
\/ proceeds again in accordance with the dynamical equations of 

motion until the next such superposition arises, and then that 
mind's eye opens up again, and so on. 

~) 

This ro osal entails that there are two fundamentally different 
sorts of ph_ysical systems in the worl : 

G Purely physical systems (that is: systems which don't contain 
sentient observers). These systems, so long as they remain 
isolated from outside influences, always evolve in accordance 
with the dynamical equations of motion. 

I& Conscious systems (that is: systems which do contain sentient 
"-9'" observers). These systems evolve in accordance with the more 

complicated rules described above.3 

But the trouble here is pretty obvious too: How the physical state 
of a certain system ev: es this proposal) depends on whether 
or not that system i conscious· and so in order to know precisely 
how things physically e ave, we need to know precisely what is 

2. Here's an example: An observer carries out a measurement of the hardness 
of a black electron. Eventually (when the measuring device has done its work, and 
the observer has looked at the device), things get to be in the state in equation (4.7), 
and then the mind's eye of the observer opens, gazes upon her brain, and causes a 
collapse, with equal probabilities, onto either the first or the second of the terms 
in that state. 

@This (needless to say) amounts to a full-blown radically interactive mind-body 
dualism. Wi~r thought that this sort of dualism turns out (ironically) to be a 
necessary consequence of physics: he thought that there was a physical job to be 
done in the world (the job of collapsing wave functions) which could only be done 
by a not-purely-physical thing. --
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conscious and what isn't. What this "theory" predicts (that is: what 
"theory" it is) will hinge on the precise meaning of the word \ 
conscious; and that word simply doesn't have any absolutely R_~-
cise meaning in ordinary la~_uag~ and Wigner didn't make any 
attempt to make up a meaning for it; and so all this doesn't end U£.. 
amounting to a genuine physical ~heory either. / J 

~t's try another guess. Perhaps the collapse occurs at the level -
of,macroscopicnes~s (not at the last possible moment but, as it were, 
at the last reasonable moment). Qn this proposal (which has lots 
g_f originators and lots of adherents), the correct laws of the evolu-
tion of the states of physical systems look something like this: All 
physical objects almost always evolve in strict accordance with the 
dynamical equations of motion. But every now and then, in the 
course of some such dynamical evolutions (in the course of mea­
surements, for example), it comes to pass (as we've seen) that two 
macroscopically different conditions of a certain system (two dif- \I 
ferent orientations of a pointer, say) get superposed, and at that 
point, as a matter of fundamental physical law, the state of the 
entire system collapses, with the usual quantum-mechanical prob­
abilities, onto one or another of those macroscopically different 
states.4 Then everything proceeds again in accordance with the 
dynamical equations of motion until the next such superposition 
arises, and then another such collapse takes place, and so on. 

There are two sorts of physical systems in the world according 
to this ro osal too: =-

A'. P rely microsco ic s stems (that is: systems which don't 
contain macroscopic subsystems). These systems, so long as 
they remain isolated from outside influences, always evolve 
in accordance with the dynamical equations of motion. 

@Macroscopic systems (that is: systems which do contain 
macroscopic subsystems). These systems evolve in accor- v 
dance with the more complicated rules described above. 

4. Here's an example: Somebody carries out a measurement of the hardness of 
a black electron. Eventually (when the measuring device has done its work), things 
get to be in the state in equation (4.4), and then that state collapses, with equal 
probabilities, onto either the first or the second of the terms in that state. 
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The trouble here is going to ~e about the meaning of macro­
scopic. And that will put us back (for the third time now) where 
westarted.5 And so all this is getting us nowhere. 

We need to find a less ambiguous way to talk. 

A Digression on Why It's Hard to Settle the Question Empirically 

Let's see if we can settle the question empirically. 
Here's the idea: The collapse of the wave function (whatever else 

it might turn out to be) is, after all, a physical event, with physical 
consequences; and those consequences must in principle be detect­
able; and so the question of precisely where and when collapses 
occur (which is what we've been merely guessing about over the 
last few pages) must in principle be answerable, with certainty, by 
means of the right sorts of experiments. 

Suppose (for example) that I have a theory about the collapse; 
and suppose that my theory entails that if I pass a black electron 
through a measuring device for hardness like the one described in 
Chapter 4, then at precisely the moment when the state of the 
electron and the measuring device becomes (in accordance with the 
dynamics) the one in equation (4.4), that state collapses, with the 
usual quantum-mechanical probabilities, onto one or the other of 
the two terms in that state. And suppose that my friend has another 
theory about the collapse; and suppose that her theory entails that 
the collapse doesn't happen until some particular later moment, 
some moment farther on in the measuring process (only when, say, 
a human retina gets involved, or an optic nerve, or a brain, or 
whatever). And suppose that we should like to test these two 
theories against one another by means of an experiment. 

Here's how to start: Feed a black electron into a measuring device 
for hardness and give it enough time to pass all the way through. 
If my theory is right, then the state of the electron and the measur-

(DThere is, as a matter of fact, an astonishingly long and bombastical tradition 
in theoretical physics of formulating these sorts of guesses about precisely when 
the collapse occurs in language which is so imprecise as to be (as we've just seen) 
absolutely useless. Some of the words that come up in these guesses (besides 
measurement and consciousness and macroscopic) are irreversible, recording, in­
(on:!!f!tion, meaning, subject, obj!Et, iii"d so on. --- -
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ing device at that moment (the moment at which the electron has 
had just enough time to pass all the way through the device) ought 
to be 

(5.1) either l"hard")mlhard), (with probability 112.) 

or l"soft")mlsoft), (with probability 112.) 

But if my friend's theory is right, then the state at that same moment 
ought to be 

(5.2) l!~"hard")mlhard), + l!~"soft")mlsoft), 

just as the dynamics predicts (the violation of the dynamics, in my 
friend's theory, doesn't happen until later). And so now all we need 
to do is to figure out a way to distinguish, by means of a measure­
ment, between the circumstances in (5.1) (wherein the pointer is 
pointing in some particular, but as yet unknown, direction) and the 
circumstances in (5.2) (wherein the pointer isn't pointing in any 
particular direction at all). 

Let's figure out what sort of an observable we would need to 
measure in order to do that. 

What if we were to measure the position of the tip of the pointer 
(that is: what if we were to measure where the pointer is pointing)?6 

Here's why that won't work: If my theory is right and, conse­
quently, ( 5.1) obtains, then of course a measurement of the position 
of the tip of the pointer will have a fifty-fifty chance of finding the 
pointer in the "pointing-at-hard" state, and it will have a fifty-fifty 
chance of finding the pointer in the "pointing-at-soft" state (since, 
on my theory, the pointer is now already in one of those two states, 
each with probability 112.). But if my friend's theory is right and, 
consequently, (5.2) obtains, then a measurement of the position of 

6. And note that we shall be supposing in what follows that this measurement 
(the measurement of the position of the tip of the pointer on the hardness measuring 
device) gets carried through all the way to the end: all the way to the point where 
some observer becomes aware of the outcome of that measurement. By the time all 
that gets done, even my friend's theory about the collapse (that is: any theory about 
the collapse whatever) will have to entail that a collapse has already occurred. 



THE COLLAPSE OF THE WAVE FUNCTION 

86 

the tip of the pointer will have a fifty-fifty chance of collapsing the 
state vector of the pointer onto the "pointing-at-hard" state, and a 
fifty-fifty chance of collapsing it onto the "pointing-at-soft" state/ 
And so the probability of any given outcome of a measurement of 
the position of the pointer will be the same on these two theories; 
and so this isn't the sort of measurement we're looking for. 

What about measuring the hardness of the electron? That won't 
work either. If my theory is right and (5.1) obtains, then a measure­
ment of the hardness of the electron will have a fifty-fifty chance 
of finding the electron in the hard state and a fifty-fifty chance of 
finding it in the soft state; and if my friend's theory is right and 
(5.2) obtains, then a measurement of the hardness of the electron 
will have ~ fifty-fifty chance of collapsing the state vector of the 
electron onto the hard state and a fifty-fifty chance of collapsing it 
onto the soft state. Again, the probabilities will be the same on both 
theories, and so this isn't the sort of measurement we're looking 
for, either. 

What about measuring the color of the electron? That won't 
work either. On my theory, one of the two states in ( 5.1) now 
obtains and a measurement of the color of the electron in either 
one of those states will have a fifty-fifty chance of collapsing the 
state of the electron onto I black), and a fifty-fifty chance of collaps­
ing the state of the electron onto !white),. On my friend's theory, 
the state in (5.2) now obtains and a measurement of the color of 
the electron in that state will likewise have a fifty-fifty chance of 
collapsing the state of the electron onto !black), and a fifty-fifty 
chance of collapsing it onto lwhite),.8 

7. Of course, in the event that the state of the pointer gets collapsed onto 
the "pointing-at-hard" state (onto l"hard")m, that is), then the state of the electron 
will automatically get collapsed onto !hard),; and in the event that the state of 
the pointer gets collapsed onto the "pointing-at-soft" state {i"soft")m), then the 
state of the electron gets collapsed onto !soft),. All of that follows from (5.2), 
together with the collapse postulate for composite systems, which was spelled out 
in Chapter 2. 

8. This is, as a matter of fact, something that we've noted before, in a slightly 
different language, in note 4 of Chapter 4. The reader can easily confirm it (as we 
mentioned there) by writing out the state in (5.2) in terms of eigenstates of the color 
of the electron. 
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Let's go back to the device. Consider an observable of the device 
which (for lack of any appropriate name) we can call zip. The 
eigenstates of zip are as follows:9 

(5.3) lzip = 0) = iready)m 

lzip = +1) = lf.,JI)"hard")m + l!.,JI)"soft")m 

!zip = -1) = l!.,Jij"hard")m- l!.,JI)"soft")m 

Measuring zip won't work either, since (much like with the color 
of the electron) if either of the states in (5.1) obtains, or if the state 
in (5.2) obtains, a measurement of zip has a fifty-fifty chance of 
collapsing the state of the pointer onto the state lzip = + 1) and a 
fifty-fifty chance of collapsing the state of the pointer onto the lzip 
= -1) state.10 

9. A few remarks are in order here. 
First of all, it follows from property (5) of Hermitian operators (in Chapter 2) 

that some such observable as zip (that is: some such Hermitian operator, some 
operator with precisely these eigenstates) necessarily exists. 

One of the eigenstates of zip (the zip= 0 state) is of course also an eigenstate of 
the pointer-position, but zip is nonetheless in general incompatible with the pointer­
position: the zip=+ 1 state and the zip= -1 state are both superpositions of states 
in which the pointer is pointing in different directions. 

The matrix for zip in the pointer-position basis 

(ili" '" '"' "'"" in wh;cl, lre•dy). = [!} l"h"d "). = [ n md l"•oh"). = m 
[1 0 0] 

will be zip = 0 0 1 
010 

The reader may want to calculate the matrix for the pointer-position in this same 
basis (it's very easy), and to confirm that that latter matrix doesn't commute with 
the matrix for zip. 

10. Note, by the way, that everything that's been discovered here about the state 
in (5.2) could have been surmised, if we had been cleverer, right at the outset. The 
state in (5.2) is, after all, a nonseparable state of the electron and the measuring 
device, a state in which no observable of the electron alone or of the measuring 
device alone can possibly have any particular value. 
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Consider, finally, an observable of the composite system consist­

ing of the measuring device and the electron, zip - color (that is: 
zip minus color). It turns out that the state in (5.2) is an eigenstate 
of zip - color (its associated eigenvalue is 0),11 and that neither of 
the states in (5.1) are eigenvalues of zip - color. And so, if my 
theory is right and (5.1) obtains, then a measurement of zip- color 
(or, rather, a collection of such measurements, carried out on sim­
ilarly prepared systems) will have a statistical distribution of vari­
ous different possible outcomes; but if my friend's theory is right 
and (5.2) obtains, then the outcome of every measurement of zip 
- color will necessarily, with certainty, be 0. And so my friend's 
theory and my theory can be distinguished from one another, em­
pirically, by means of measurements of zip - color. 

And this, needless to say, is a very general sort of fact: any claim 
about precisely where and precisely when collapses occur can in 
principle be distinguished from any other one, empirically, by 
means of measurements more or less like this one.12 

And so it would seem that the right way to find out precisely 
where and precisely when collapses occur must be just to go out 
and perform these sorts of measurements. 

The trouble is that, for a number of reasons, that turns out to be 
an extraordinarily difficult business to actually carry through. 

The nicest one of those reasons has to do with the ways that 
measuring devices, in virtue of their macroscopicness, necessarily 
interact with their environments. 

Let's see how that works. 
Suppose that a black electron is on its way into a hardness 

measuring device and that the measuring device is in its ready state. 
And suppose that (as in figure 5.1) there happens to be a molecule 
of air sitting just to the right of the pointer, so that if the pointer 
were to swing to its "hard" position then the molecule would get 
pushed to the middle of the dial, and if the pointer were to swing 

11. This can be confirmed by writing out the state in (5.2) in terms of eigenstates 
of color (for the electron) and of zip (for the pointer). 

12. This is the sort of measurable property referred to in note 2 of Chapter 4. 
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Figure 5.1 

to its "soft" position then the molecule would get pushed to the 
right end of the dial. 13 

And now the electron passes through the hardness device, which 
swings the pointer, which pushes the air molecule (which behaves 
somewhat like a device for measuring the position of that pointer 
here);14 and the reader (who is by now well versed in calculations 
about the behaviors of measuring devices) will have no trouble in 
confirming that the state of the electron and the hardness device 
and the molecule, when that's all done, on my friend's theory, is 
going to be 

(5.4) Vv'l(lhard).l"hard")mlcenter)a + isoft).l"soft")mlright)a) 

where the vectors labeled with subscript a are state vectors of the 
air molecule. 

That's how things stand at this point in the story, on my friend's 
theory, in the presence of an air molecule. Note that this state 

13. Note that we are attributing both a fairly well-defined velocity (rest) and a 
fairly well-defined position (near the pointer) to this molecule at the same time here. 
The mass of an air molecule is large enough that doing so need not conflict with 
the uncertainty relations. 

14. That is: the molecule is situated in such a way as to bring about a correlation 
between its own final position (once the swinging is over with) and the final position 
of the pointer. The molecule is situated in such a way as to make it possible to infer 
the final position of the pointer from the final position of the molecule. 
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(unlike the state in (5.2), which is how things stand at this same 
point in the. story, on my friend's theory, in the absence of the air 
molecule) has no definite value of zip - color,15 

And the way that things stand on my own theory, at this point 
in the story, in the presence of an air molecule, is 

(5.5) lhard).l"hard")mlcenter)a (with probability l,-2} 

lsoft).l"soft")mlright)a (with probability l,-2) 

Of course, neither of the states in (5.5) has any definite value of zip 
- color either. And so (5.4) and (5.5) (unlike (5.2) and (5.1)) 
cannot be distinguished from one another by means of measure­
ments of zip - color. 

And so, in the presence of an air molecule (unlike in the absence 
of one), my theory of the collapse and my friend's theory of the 
collapse cannot be distinguished from one another by means of 
measurements of zip - color. 

What's going on here is that the state in (5.4) is nonseparable 
between the electron and the measuring instrument and the air 
molecule. Any measurement by means of which (5.4) can possibly 
be distinguished from (5.5)-any measurement, that is, by means 
of which my friend's theory can possibly be distinguished from my 
theory, in the presence of an air molecule (and of course such 
measurements will still, in principle, exist)-must necessarily be a 
measurement of an observable of the composite system consisting 
of all three of those objects. And the measurement of that observ­
able (whatever, precisely, it turns out to be) will patently be a more 
difficult matter than the measurement of zip - color is. 

15. The way to confirm that, of course, is to write (5.4) out in terms of 
eigenstates of zip - color. 

What's going on here, by the way, can be looked at as another special case of the 
very general phenomenon described in note 4 of Chapter 4. The air molecule acts 
here as a device for measuring the position of the pointer; and zip, and zip - color, 
are both incompatible with that position, and so the dynamical equations of motion 
themselves will entail that interaction of the air molecule with the pointer will 
disrupt the values (that is: it will randomize the values) of zip and zip- color. 
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And this is also patently not the end of the story. There will be 
other air molecules around too, in general, and there will be tiny 
specks of dust, and imperceptible rays of light, and an unmanage­
able multitude of other sorts of microscopic systems as well, and 
all of them together (in virtue of their sensitivities to the position 
of the pointer; in virtue, that is, of the fact that each of them can 
act more or less as a measuring instrument for the position of that 
pointer) will fantastically increase the complexity of the observ­
ables which need to be measured (which is to say: it will fantasti­
cally increase the difficulty of measuring the observables which 
need to be measured) in order to distinguish between my theory 
and my friend's theory. 

And of course the business of avoiding these sorts of complica­
tions by means of perfectly isolating the pointer from any interac­
tions whatsoever with (say) molecules of air, and rays of light will 
be fantastically complicated too. 

The upshot of all this (that is: what these arguments establish) is 
that different conjectures about precisely where and precisely when 
collapses occur are the sorts of conjectures which (for all practical 
purposes; or, rather, for all presently practical purposes) cannot be 
empirically distinguished from one another.16 And so apparently the 

16. There's something of a tradition in the physical literature, by the way, of 
misunderstanding these arguments to establish something quite different. Accord­
ing to that tradition (which goes back, I think, to Daneri, Loinger, and Prosperi, 
1962, and which has since then been carried on by Gottfried, 1966, Peres, 1980, 
and Gell-Mann and Hartle, 1990, and by lots of lesser misunderstanders too), what 
these arguments establish is that different conjectures about whether or not col­
lapses ever occur are the sorts of conjectures which (for all practical purposes; or, 
rather, for all presently practical purposes) cannot be empirically distinguished from 
one another. 

Let's rehearse (again) why that can't possibly be true. The point is just that if the 
standard way of thinking about what it means to be in a superposition is the right 
way of thinking about what it means to be in a superposition (which is what all 
those misunderstanders always suppose), then (as we saw in Chapter 4) what 
proves that there are such things in the world as collapses is just the fact that 
measurements have outcomes! And the fact that measurements do have outcomes 
(as opposed to facts about precisely when they have outcomes) isn't the sort of fact 
that we learn by means of the difficult sorts of experiments we've been talking 
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best we can do at present is to try to think of precisely where and 
precisely when collapses might possibly occur (precisely where and 
precisely when they might occur, that is, without contradicting 
what we do know to be true, as of now, by experiment). 

And it turns out to be hard (as we're about to see) to do even 
that. 

Trying to Cook Up a Theory 

Let's start over. 
Let's see if we can think of precisely what it is that we want from 

a theory of the collapse. 
Here's a first try at that: 

i. We want it to guarantee that measurements (whatever, pre­
cisely, that term turns out to mean) always have outcomes; 
we want it to guarantee (that is) that there can never be any 
such thing in the world as a superposition of "measuring that 
A is true" and "measuring that B is true." 

about here. The fact that measurements have outcomes is the kind of thing that we 
learn by means of direct introspection, by means of merely knowing that there are 
matters of fact about what our beliefs are!* 

Of course (and this is going to be important), if it should turn out that the 
standard way of thinking about superpositions isn't the right way of thinking about 
them, then all bets are going to be off. But of that more later. 

*It isn't easy to imagine precisely how all of those (extremely distinguished) 
misunderstanders can possibly have gotten themselves so confused. The argument 
we've been talking about, after all, is an argument about the probabilities of certain 
measurements having certain outcomes; any argument about the probabilities of 
certain measurements having certain outcomes will (needless to say) critically 
depend on the assumption that that there are (sooner or later) such things as the 
outcomes of those experiments; and so any argument about the probabilities of 
certain experiments having certain outcomes (supposing that the standard way of 
thinking about superpositions is the right way of thinking about them; which is, 
as I mentioned above, what all those guys did suppose) will critically depend on 
the assumption that there are (sooner or later) such things as collapses; and so 
(supposing what those guys supposed) any argument (like the one we've been 
talking about) about the probabilities of certain experiments having certain out­
comes can't possibly be an argument to the effect that there might not (for all we 
know) be any such things as collapses; and yet that's just the sort of an argument 
that all those guys (go figure!) took it to be. 
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ii. We want it to preserve the familiar statistical connections 
between the outcomes of those measurements and the wave 
functions of the measured systems just before those measure­
ments. That is: we want it to entail, or we want it at least to 
be consistent with, principleD of Chapter 2. 

iii. We want it to be consistent with everything which is experi­
mentally known to be true of the dynamics of physical sys­
tems. We want it, for example, to be consistent with the fact 
that isolated microscopic physical systems have never yet 
been observed not to behave in accordance with the linear 
dynamical equations of motion, the fact that such systems, in 
other words, have never yet been observed to undergo col­
lapses. 

The difficulty is in being absolutely explicit about (i). 
Let's see if we can figure out how to do that. Let's try to be very 

practical. Let's focus somewhat more carefully on the physical 
mechanisms whereby the outcomes of measurements are ultimately 
recorded in measuring instruments. 

What jumps out at you right away is that those recordings are 
typically stored in the positions of things: the positions of the tips 
of pointers, say, or the positions of drops of ink on scrolls of paper, 
or of bits of pencil lead in experimental notebooks. 

Let's try to run with that. Perhaps it will suffice for what we want 
(which is to guarantee that measurements always have outcomes) 
to cook up a theory (if we can manage to) which somehow entails 
that every macroscopic object (that is, say, every object big enough 
to see, or every object even remotely big enough to see, or some­
thing like that) always (or maybe only almost always) has some 
definite particular position. 

Let's see if we can make up a theory that does that. 
Suppose we were to conjecture that every elementary particle in 

the world17 occasionally (that is: once in some very great while), as 

17. That is: the indivisible elementary pointlike constituents (electrons, say, and 
quarks, and so on) out of which every material object in the world is presumed to 
be made. 

The idea of such elementary particles, by the way (that is: the idea of them which 
we shall want to make use of here), is an explicitly nonrelativistic idea; and so the 
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a matter of physical law, ceases (for an instant) to evolve in accor­
dance with the dynamical equations of motion and undergoes a 
collapse which leaves it in an eigenstate of position. The times at 
which these collapses occur are stipulated to be absolutely random: 
there is merely a fixed, small, lawlike probability, per unit time, for 
each particle, that that particle, in that time interval, will undergo 
one of these collapses; and the point in space onto which the wave 
functions of these particles collapse (when they do collapse) will be 
determined probabilistically by the conventional quantum-mechan­
ical probability formula (the one in principleD of Chapter 2); and 
all this is stipulated to hold for each particle separately (the times 
at which different particles undergo collapses, for example, will in 
general be unrelated to one another). 

Let's spell this out somewhat more carefully. Consider a particle 
whose state at a certain instant is 

There is (according to this conjecture) a certain fixed, extremely 
small probability that this particle will undergo a collapse within 
the next, say, millisecond; and if it does happen to undergo one of 
those collapses, just at the moment when its state happens to be 
the one in (5.6), then the probability that that collapse will leave it 
in the state lxt) will be latl2, and the probability that that collapse 
will leave it in the state lx2) will be la2l2, and so on. 

Let's put it slightly differently. What happens in a state like (5 .6), 
if a collapse happens to take place, is that one of the terms in (5.6) 
gets multiplied by a finite number, and all the rest get multiplied by 
0; and then, until the next collapse takes place (which will likely 
be a very long time), the state of the particle evolves again in 
accordance with the equations of motion. The probability, if a 
collapse does occur, that the ith term in (5 .6) is the one that gets 
multiplied by a finite number is la;l2; and the number it gets multi-

theory of collapses which follows is going to be an explicitly nonrelativistic theory. 
The relativization of this theory is something we can begin to think about, if we're 
still in the mood, once the nonrelativistic theory is in place. 
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plied by (if it turns out to be the one that gets multiplied by a finite 
*umber) is 1/a;. 

Let's put it one more way (this one will be particularly useful in 
what follows). What happens when a particle undergoes a collapse 
is that the wave function of the particle gets multiplied by an 
eigenfunction of the position operator, like the one depicted in 
figure 5 .2; and the probability that the position eigenvalue of that 
position eigenfunction is X; is stipulated to be equal to l(x;lw)l2 

(where lw) is the state of the particle at the moment just before the 
collapse occurs); and note that the outcome of this multiplication 
(that is: the product of these two wave functions), whatever lw) 
happens to be, is invariably also an eigenfunction of the position 
operator with eigenvalue x;.18 

Suppose that the probability per minute, for each particle, of 
undergoing a collapse is stipulated to be very, very, very small (one 
in trillions, say). Then the probability of our ever experimentally 
observing a collapse in an isolated microscopic system, a system 
(that is) which consists of small numbers of particles, will be very 
small too (even though such collapses will necessarily sometimes 
occur). 

But (here's the punch line) consider what happens in macroscopic 
systems; consider what happens, for example, in measuring instru-

18. Note, by the way, that what I mean by multiplying two wave functions by 
one another, or taking the product of two wave functions, is something entirely 
different from taking the product of their two state vectors. The product of two 
state vectors is invariably a number. The product of two wave functions, on the 
other hand (as I'm using the term here), is defined to be that wave function whose 
value at each particular point in space is the product of the values of the two 
multiplied wave functions at that particular point in space. 
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ments. Think about the pointer in the hardness measuring device. 
It consists of trillions of particles (let's call them "1" and "2" and 
so on). The state in (5.2), for example, written out in terms of the 
states of those constituent particles, will look something like this: 

where Xt is the position of the pointer when it's pointing to "hard" 
and xz is the position of the pointer when it's pointing to "soft. "19 

Suppose that one of the particles in the pointer, any one of them, 
when (5.7) obtains, were suddenly to undergo a collapse (and note 
that the probability of that occurring, within even a very small 
fraction of a second, will be very high; since the pointer consists of 
such a gigantic number of individual particles). Consider what that 
will do to the state in (5.7). Suppose that it happens to be the ith 
particle in the pointer that undergoes the collapse, and suppose (for 
example) that that particle happens to get collapsed onto the state 
lxt);. What that means is that the lxz); vector in (5.7) gets multiplied 
by 0; and what that means (since lxz); multiplies everything else in 
the second term in (5.7)) is that when that particle undergoes that 
collapse, if the collapse happens to be onto lxt); (and the probability 
of that is of course precisely la.), then the entire second term in 
(5.7) (in (5.2), that is) will vanish, and the state will turn into the 
first of the states in (5.1). 

And so the simple and beautiful conjecture which we are now 
entertaining (which is originally due to Ghirardi, Rimini, and 
Weber, 1986, and which was later put in a particularly nice form 
by Bell, 1987a) entails that collapses almost never happen to iso-

19. The fact that pointers on measuring devices typically consist of trillions of 
particles, by the way, is yet another of the reasons for the extraordinary difficulty 
of distinguishing, by means of experiments, between various different conjectures 
about precisely when collapses occur. The state in (5.7) (that is: the state in (5.2)) 
is non separable between the electron and every one of the constituents of the 
pointer; and so observables like zip- color, which distinguish between (5.2) and 
(5.1), must necessarily (even if the device and the electron were to be perfectly 
isolated from all of the rest of the world) be fantastically complicated ones; they 
must be observables which make reference to every individual one of all of those 
trillions of constituents. 
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lated microscopic systems. It also entails that states like the one in 
(5.2) will, almost certainly and almost immediately, collapse, with 
the standard quantum-mechanical probabilities, onto one or the 
other of the two states in (5.1). And all of that is of course precisely 
what we want from a theory of the collapse of the wave function; 
and all of it follows from a theory which can be formulated with 
perfect scientific explicitness, with no talk whatever (at a funda­
mental level) about "measurements" or "amplifications" or "re­
cordings" or "observers" or "minds." And so now we really seem 
to be getting somewhere. 

One technical difficulty needs to be attended to: The collapses 
described above leave the particles which undergo them in perfect 
eigenstates of the position operator, and of course that entails that 
the momenta and the energies of those particles (whatever their 
values may have been just prior to those collapses) will be com­
pletely uncertain just following those collapses, and that will give 
rise to a host of problems: The momenta which electrons in atoms 
might sometimes acquire in the course of such collapses, for exam­
ple, would be enough to knock them right out of their orbits; and 
the energies which certain of the molecules of a gas might some­
times acquire in the course of such collapses would be enough to 
spontaneously heat those gasses up, and those sorts of things are 
experimentally known not to occur. 20 

The way to deal with that (and this is precisely what Ghirardi, 
Rimini, and Weber did) is to change the prescription slightly: Stip­
ulate that when a particle undergoes a collapse, what its wave 
function gets multiplied by isn't an eigenstate of the position oper­
ator but is rather a bell-shaped function like the one in figure 5 .3. 
Also stipulate that the probability of that bell curve's being centered 
at the point X; (if such a collapse happens to occur) is proportional 
to I(B;Iw)l2 (where IB;) is the bell-curve state centered at X; and lw) 
is the state of the particle just prior to the collapse). 

And note that in typical cases (when the wave function of the 

20. That is: they're known not to occur as often as would be required, statisti­
cally, by this prescription. 
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particle just prior to the collapse is a good deal more spread out 
than the bell curve, and a good deal more smoothly varying than 
the bell curve) the multiplication of the initial wave function by a 
bell curve like the one in figure 5.3 will produce a new wave 
function which is itself much like the bell curve in figure 5.3 and 
which is centered at precisely the same point. 

Let's see why that helps. Remember what it is that we want from 
collapses. What we want from them (what will suffice, at any rate) 
is to make the macroscopic world look as it looks to us: what we 
want from them is to insure that macroscopic objects invariably 
have determinate locations, or that they almost invariably have 
determinate locations, or at least that they almost invariably have 
almost determinate locations. And it turns out that this revised 
prescription can deliver that; it turns out that the bell curves can 
be made narrow enough so that whatever uncertainties there are in 
the positions of macroscopic things are almost invariably micro­
scopic ones. And it turns out (and this is the punch line) that these 
curves can nonetheless be made wide enough (at the same time) so 
that the violations of the conservation of energy and of momentum 
which the multiplications by these curves will produce will be too 
small to be observed. 21 

But as a matter of fact this revised prescription gives rise to another 
sort of difficulty, a somewhat more subtle one. 

21. Let's step back here a minute and look at precisely what sort of a theory we 
have. 

This theory introduces two new fundamental constants of nature into our picture 
of the world: the probability, per unit time, per particle, of a collapse, and the 
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Consider again precisely what we want from a collapse; consider 
in precisely what sense we want it to guarantee that macroscopic 
objects almost always have "almost determinate locations." What 
we've found out is that the so-called widths of the bell curves of 
this prescription (that is: the length L in figure 5.3) can be made 
microscopic; but consider whether that's what counts, consider 
whether that will completely suffice. 

The trouble is that the values of the bell-curve functions don't 
ever reach precisely 0, no matter how far away from their centers 
you get; and so the states that particles get left in, if they undergo 
collapses, on the revised prescription, are still (strictly speaking) 
superpositions of being all over the place; and so as a matter of 
fact, these collapses do not have the effect, on the standard way of 
thinking, of putting anything in an even approximately determinate 
position; and so this revised prescription (on the standard way of 
thinking) apparently cannot insure (for example) that experiments 
with measuring devices with pointers on them ever have outcomes 
after all. 

The effect that these collapses do have, of course, is to put the 
state vectors of pointers close to other state vectors of those point­
ers in which those pointers do have (approximately) determinate 
positions. What needs to be made clear (if we want to stick with 
this theory) is how that does us any good. And it isn't easy to see 
(so far as I know) precisely how to do that.ll 

But let's suppose that there is a way to do that, and try to press 
on. 

widths (the L's of figure 5.3) of the multiplying bell curves. The values of those 
constants, as well as the fact that such collapses occur at all, aren't things that 
Ghirardi, Rimini, and Weber ever make any attempt to explain: all of that is simply 
taken to be a part of the basic laws of nature. 

This may strike some readers as unpleasantly ad hoc. 
Those readers certainly have their nerve. What were they expecting, precisely? 

Let them go and reflect on what came before; let them go and reflect how much 
has been accomplished here. 

22. Doing that (if there is a way of doing that) will apparently require some sort 
of a modification of the standard way of thinking. 
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Experiments with Television Screens 

What we've been supposing so far is that every measuring instru­
ment must necessarily include some sort of pointer, which indicates 
the outcome of the measurement. And we've been supposing that 
that pointer (if this instrument really deserves to be called a mea­
suring instrument) must necessarily be a macroscopic physical ob­
ject. And we've been supposing that that pointer must necessarily 
assume macroscopically different spatial positions in order to indi­
cate different such outcomes. And it turns out that if all that is true, 
then the GRW theory (which is what we'll call it from now on) can 
do (i) and (ii) and probably (iii) as well. 

The question, of course, is going to be whether all measuring 
instruments (or, rather, whether all reasonably imaginable measur­
ing instruments} really do work like that. 

Here's a standard sort of arrangement for measuring the hardness 
a particle: The particle gets fed into a hardness box like the one in 
figure 5.4, which separates hard particles from soft ones by means 
of magnetic fields. The incoming hard particles get directed (by the 
magnetic fields) toward point A on a TV screen, and the incoming 
soft particles get directed toward point B. The TV screen works 
like this: A particle striking the screen at (say) point B knocks 
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certain electrons in certain of the fluorescent atoms in the screen in 
the vicinity of point B into their so-called excited orbits (that is: it 
knocks those electrons into orbits around their atomic nuclei which 
are a good deal more energetic and a good deal more unstable than 
the orbits they're normally in); and soon thereafter those electrons 
spontaneously de-excite back to their original (stable, low-energy) 
orbits; and in the process of de-exciting (that is: in the process of 
losing their excess energy) they emit photons; and thus the vicinity 
of B becomes a luminous dot, which can be observed directly (that 
is: without any further artificial apparatus) by a human experi­
menter. 

We want to inquire whether or not the GRW theory entails that 
a hardness measurement like that, on a particle which is initially 
(say) black, has an outcome. That will depend on whether or not 
there ever necessarily comes a time, in the course of measurement, 
when the position of a macroscopic object, or the positions of some 
gigantic collection of microscopic objects, is correlated with the 
hardness of that particle (let's call it P). With all that in mind, let's 
rehearse the stages of the measuring process (what follows here gets 
spelled out in a bit more detail in Albert and Viadman, 1988) again. 

First, the wave function of P gets magnetically separated (by the 
hardness box) into hard and soft components. No outcome of the 
hardness measurement (no collapse, that is) will be precipitated by 
that separation, since, as yet, nothing in the world save the position 
of P (nothing, that is, save a single, microscopic degree of freedom) 
is correlated to the hardness. Let's keep looking. 

Next, P hits the screen, and at that stage the electrons in the 
fluorescent atoms get involved. Consider, however, whether those 
electrons get involved in such a way as to precipitate (via GRW) an 
outcome of the hardness measurement. Here's the crucial point: the 
GRW "collapses" are invariably collapses onto (nearly) eigenstates 
of position, but it's the energies of the fluorescent electrons, and 
not their positions, that get correlated, here, to the hardness of P! 
The GRW collapses aren't the right sorts of collapses to precipitate 
an outcome of the hardness measurement here. 

Let's make this point somewhat more precise. If the initial state 
of P is lblack)p, then, just after the impact of P on the TV screen, 
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the (nonseparable) state of P and of the various fluorescent elec­
trons in the vicinities of A and B will look (approximately; ideally) 
like this: 

(5.8) V..Jrlhard, X = A)plex).l ... lex).Niunex).N + 1 ••• lunex)e2N 

+ V..Jrlsoft, X = B)plunex)e~ ... lunex).Niex).N + 1 

... lex)e2N 

where el ... eN are fluorescent electrons in the vicinity of A, eN 
+ 1 ... e2N are fluorescent electrons in the vicinity of B, lex) 
represents a state of being in an "excited" orbit, and lunex) repre­
sents a state of being in an "unexcited" orbit. Suppose, now, that 
a GRW "collapse" (that is, a multiplication of the wave function 
of one of the fluorescent electrons by a bell curve like the one 
depicted in figure 5.3) occurs. Consider whether this sort of a 
collapse will make one of the terms in (5.8) go away, allowing only 
the other to propagate. The problem, once again, is that these aren't 
the right sorts of collapses for that job, because lex) can't be 
distinguished from lunex) in terms of the position of anything. 
Indeed, a GRW collapse will leave (5.8) almost entirely unchanged 
(except, perhaps, in the wave function of some single one of the 
many, many fluorescent electrons). And so no outcome of this 
measurement is going to emerge at this stage of things, either. 23 

We shall have to look still elsewhere. The next stage of the 
measuring process involves the decay of the excited electronic or­
bits and (in that process) the emission of photons. If the first term 
of (5.8) obtains, the photons would be emitted at A; if the second 
term obtains, the photons would be emitted at B. Those two states, 
then, can be distinguished, at least at the moment of emission, in 
terms of the positions of the photons. Now, so far, the GRW theory 
has been explicitly written down in a form which applies only to 

23.1've left aside the whole question of the probability of a GRW collapse taking 
place at this stage of things (since, as we've just seen, a collapse like that won't do 
any good here anyway), but it ought to be noted in passing that that probability 
might well turn out to be extremely low. It's well known, after all, that the unaided 
human eye is capable of detecting very small numbers of photons; so perhaps only 
very small numbers of fluorescent electrons need, in principle, be involved here! 
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nonrelativistic quantum mechanics. The behaviors of photons, on 
the other hand (and particularly the creation of photons, by devices 
like TV screens), can be accounted for only in the context of a 
relativistic quantum field theory. It isn't completely clear as yet (for 
a number of rather technical reasons) how a GRW-type theory 
might treat them. If it turns out that photons can't experience GRW 
collapses, then of course no outcome of the hardness measurement 
can possibly emerge at this stage. But let's give the theory the benefit 
of the doubt: let's suppose that photons can experience GRW 
collapses. The problem at this stage of the measurement is going to 
be that that distinguishability is going to be extremely short-lived. 
It turns out that in almost no time, in far too little a time for a 
GRW collapse to be likely to occur (supposing that A and B are, 
say, a few centimeters apart, on a flat screen), the two photon wave 
functions described above will spread out (as shown in figure 5.5) 
so as to overlap almost entirely in position space, and the distin­
guishability in terms of positions will go away, and we shall be in 
just such a predicament as we found ourselves in at the previous 
stage of the measurement. No outcome, it seems, will emerge here, 
either. 

But now we're running out of stages. The measurement (accord­
ing to all the conventional wisdom about measurements) is already 
over! By now, after all, we have a recording; by now genuinely 
macroscopic changes (that is: changes which are thermodynami­
cally irreversible, changes which are directly visible to the unaided 
human eye) have already taken place in the measuring apparatus. 

And so it turns out that genuine recordings need not entail 
macroscopic changes in the position of anything; changes in (say) 
the energies of large numbers of atomic electrons (as in the above 
example) can be recordings too. It turns out (to put it slightly 
differently) that there can be genuinely macroscopic measuring 
instruments that (nonetheless) have absolutely no macroscopic 
moving parts. 

That's what's been overlooked in the GRW proposal. What the 
GRW theory requires in order to produce an outcome isn't merely 
that the recording in the measuring apparatus be macroscopic (in 
any or all of the senses just described), but rather that the recording 



THE COLLAPSE OF THE WAVE fUNCTION 

104 

A A A . 

AAAAA, 
ABAbh .... A A A 

ABABABABAb. A 1-. 

TV ABABABABABABh A 
screen D Regions in which the 

photon wave function 
associated with A is 
nonzero 

Figure 5.5 

~ABABABABABABABf 

A 

j 

BABABABABABABAt. t 

ABABABABABABABAB1 

B BABABABABABABA~: 

ABABABABABABABAj 

ABABABABABABAF B 

ABABABABABAS B r 

ABABAB.AJ' ·s 8 P 

B 8 B 8 B r 

B B R ... 

Regions In which the 
photon wave function 
associated with B is 
nonzero 

process involve macroscopic changes in the position of something. 
And the trouble is that no changes of that latter sort are involved 
in the kinds of measurements we've just been talking about.24 

Inside the Observer's Head 

Suppose, after all this, that we wanted to stick with the GRW 
theory anyway. What would that entail? 

Well, we would have to deny that the measurement described 
above is over even once a recording exists. We would have to insist 

24. Needless to say, this is not a point merely about measuring devices. The 
situation is as follows: if the GRW theory is the true physical theory of the world, 
then (astonishingly) things can in principle be cooked up in such a way as to 
guarantee that there literally fails to be any matter of fact about whether (say) 
Ralph Kramden's face or Ed Norton's face is the face that appears on some 
particular TV screen, at some particular moment. 
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(and certainly this is an ineluctable fact, when you come right down 
to it) that no measurement is absolutely over, no measurement 
absolutely requires an outcome, until there is a sentient observer 
who is actually aware of that outcome. 

So, if we wanted to try to stick with this theory in spite of 
everything, the thing to do would be to insist that as a matter of 
fact we haven't run completely out of stages yet, and to go on 
looking, in those latter stages, for an outcome of this experiment 
(even though we've already looked right up to the retina of the· 
observer and not found one); and of course the only place left to 
look at this point is going to be on the inside of the nervous system 
of the observer. 

This is going to be an uncomfortable position to be in; what the 
possibility of entertaining some particular fundamental theory of 
the whole physical world is going to hinge on (if we go down this 
road) are the answers to certain detailed questions about the phys­
iology of human beings; but let's try to press on and see how it 
might work. Here's one idea: Consider the two different physical 
states of the observer's retina (call them RA and RB) which arise 
in consequence of its being struck by light from one or the other 
of the two luminous spots on the fluorescent screen. Perhaps the 
retinal states RA and RB macroscopically differ from one another 
in (among other things) the positions of some gigantic collection of 
microscopic physical objects (the positions of some collection of 
ions, say). Whether or not that turns out to be so is of course a 
question for neurophysiology (and I presume that it's a question 
for the future of that subject), but the idea would be that if it does 
turn out like that, then the observer's retina itself can play the role 
of GRW's macroscopic pointer in this experiment: it (the retina) 
can bring about the collapse, it can suffice to finally precipitate an 
outcome. 

Now of course it might turn out that RA and RB do not differ 
from one another in the positions of any sufficiently gigantic col­
lection of physical objects. It might turn out, say, that the retina 
works more or less like a fluorescent screen and (consequently) that 
no outcome of this experiment can emerge at the stage of the retina, 
either. In that case we would presumably turn our attention next 
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to the optic nerve, and then, finally (if things go badly with the 
optic nerve too), to the observer's brain itself. 

If things were ever to get to that point, then the possibility of 
continuing to entertain the GRW theory would hinge directly on 
whether or not the brain state associated with seeing a luminous 
dot on the fluorescent screen at point A (call that BA) differs from 
the brain state associated with seeing a luminous dot on the fluores­
cent screen at point B (call that BB) in terms of the positions of any 
gigantic collection of physical components of the observer's visual 
cortex. If those two brain states do differ in that way (and that, 
once again, will be a question for neurophysiology), then the GRW 
theory could continue to be entertained. 

But of course if it were to emerge, after all this, that BA and BB 
do not differ in precisely that way, if it were to emerge that they 
differ only in ways other than that, then the game would be over; 
then (that is) we would be absolutely out of stages. 

Suppose that the human neurophysiology works out O.K.; suppose 
(that is) that it turns out that the human brain states BA and BB 
which I just described (the states which correspond to seeing a 
luminous dot at point A and seeing a luminous dot at point B) differ 
by, among other things, the positions of some gigantic number of 
ions.25 How would things stand then? 

Well, that would be a relief. That would mean that the GRW 
theory entails that at the point when the visual cortex of the 
experimenter gets into the game, then (and only then) an outcome 
of this experiment does finally emerge. Of course this outcome 
comes astonishingly late {later than we can possibly be comfortable 
with, later than anyone could ever have imagined). But suppose 
we're willing to swallow all that; suppose (that is) that we're willing 
to entertain the possibility that our intuitions can be radically false 
even about the absolutely familiar macroscopic external world. 
Then it would have to be admitted that (if you go strictly by the 
rule book) this outcome comes on time. 

25. As a matter of fact, it has recently been argued (Aicardi, Borsellino, Ghirardi, 
and Grassi, 1991) that the brain states produced by different visual stimuli are 
likely to differ in that way. It isn't clear yet, however, what the story is with other 
sorts of sensory stimuli. 
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But what if at that point we were to begin to worry about the 
possibility of there being other sorts of sentient observers in the 
world (dolphins, say, or Martians or androids or whatever) for 
whom BA and BB don't differ in the appropriate way? 

Or what if we were to begin to worry about the possibility of 
the development of (say) surgical techniques whereby ordinary 
human beings could be transformed into beings for whom BA and 
BB don't differ in the appropriate way? 

Let's work through a science-fiction story (a story which, how­
ever, is everywhere scrupulously consistent with the hypothesis that 
the GRW theory is the true and complete theory of the world) 
about that last possibility. 

First we'll need to set things up. The story involves a device 
(figure 5 .6) for producing a correlation between the position of a 
certain microscopic particle P and the hardness of an electron; a 
sort of measuring device for hardness, in which the "pointer" is 
this particle called P. Here's how the device works: If P starts out 
in its middle position, and if a hard electron is fed through the 
device, then the hardness of that electron is unaffected by its pas­
sage through the device, and the device is unaffected too, except 
that P ends up, once the electron has passed all the way through, 
in its upper position; and if P starts in its middle position, and if a 
soft electron is fed through the device, then the hardness of that 
electron is unaffected by its passage through the device, and the 
device is unaffected too, except that P ends up in its lower position. 

Suppose now that sometime in the distant future somebody 
named John undergoes a technically astonishing neurosurgical pro-
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cedure which leaves him looking like he does in figure 5.7: John 
has a little door on either side of his head, and a device like the one 
I just described is now sitting in the middle of his brain, and (here 
comes the crucial point) the particular way in which that device is 
now hooked up to the rest of John's nervous system makes John 
behave as if his occurrent beliefs about the hardnesses of electrons 
which happen to pass through that device are determined directly 
by the position of P. 

Here's what I mean. Suppose that John is presented with a hard 
electron and is requested to ascertain what the value of the hardness 
of that electron is. What he does is to take the electron into his 
head through his right door, and pass it through his surgically 
implanted device (with P initially in its middle position) and then 
expel it from his head through his left door. And when that's all 
done (when Pis in its upper position but when, as yet, the value of 
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the hardness of the electron isn't recorded anywhere in John's brain 
other than in that position of P), John announces that he is, at 
present, consciously aware (as vividly and as completely as he is 
now aware of anything, or has ever been aware of anything in his 
life, he swears) of what the value of the hardness of the electron is, 
and that he would be delighted to tell us what that value is, if we 
would like to know. 26 

Let's think about what John says. There's going to be a tempta­
tion to suppose that John must somehow be mistaken, to say: 
"Look, how can it be that John is now consciously aware of what 
the value of the hardness of the electron is? Nothing in John's brain, 
other than the position of P, is correlated to the hardness of the 
electron now; and P isn't a natural part of John's brain at all; P is 
just a surgical implant, Pis (after all) just a particle!" And imagine 
that John will say: "Look; whether or not P happens to be one of 
the components of my brain that I was born with is completely 
beside the point; I tell you now, from my own introspective expe­
rience, that if (as you tell me) nothing is now correlated to the 
hardness of that electron other than the position of P, then things 
must now be wired up in such a way that the position of P itself 
directly determines my present occurrent conscious beliefs about 
the value of the hardness of that electron!" 

And John is now indeed in a position to announce, correctly, 
what the value of the hardness of that electron is, if he's asked to; 
and it's pretty clear that John can in principle be wired up so as to 
reproduce, in his present state, any of the behaviors of a genuine 
"knower" of that hardness whatsoever;27 and John will claim (and 
who will we be to argue with him?) that, after all, no one is better 

26. Of course, in the event that John actually does tell us that value, then (in 
the course of the physical process of telling us that) certain physical observables of 
John's brain other than the position of P would, no doubt, become correlated with 
the hardness of the measured electron. The point is that at this stage of things (when 
it's already the case that John claims to know the value of that hardness) they aren't. 

27. And it's also pretty clear that John can in principle be wired up in such a 
way as to guarantee that (in his present state) he satisfies any functional criterion 
you can dream up for being a genuine "knower" of the hardness. 
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qualified than he himself to judge whether his own psychological 
experiences are really "genuine" ones or not! 

Anyway, this much is certain: Either John is radically mistaken 
about what his own psychological experiences are, or else (if he 
isn't mistaken) nothing like a GRW theory can possibly insure that 
there are invariably determinate matters of fact about the psycho­
logical experiences of sentient observers at all. The point is that 
nothing macroscopic has happened in this story yet; and so if John 
now actually has an occurrent belief about the hardness of the 
electron, as he says he does, and as everything that can be empiri­
cally found out about him testifies he does, then John can indeed 
come to have such beliefs without anything macroscopic happen­
ing; and so (in the event that, say, the electron whose hardness John 
measures starts out in an eigenstate of color) nothing along the lines 
of a GRW theory is going to be able preclude the development of 
a superposition of states corresponding to different such beliefs. 

And as a matter of fact, if John can come to have beliefs without 
anything macroscopic happening (which he says he can do, and 
which it seems he can do), then no theory of the collapse of the 
wave function whatsoever is going to be able to preclude the 
development of superpositions like that; because precluding super­
positions like that will require that the collapse be inserted at a level 
(the level of isolated microscopic systems) at which we know, by 
experiment, that no collapses ever occur.28 

Of course (on top of everything we've just been talking about) there 
hasn't ever been so much as a shred of what you might call normal 

28. Perhaps this ought to be fleshed out a bit. Suppose that we were able to cook 
up a theory of the collapse which is patently as good as any theory of the collapse 
could imaginably be. Suppose, that is, that we were able to cook up a theory which 
is consistent with everything we know to be true of the behaviors of isolated 
microscopic systems and which entails (somehow) that superpositions of states 
which differ from one another in terms of anything macroscopic whatever (not just 
in terms of the positions of any gigantic number of particles) don't last long. And 
suppose that it were clear that this theory can indeed guarantee that an experiment 
carried out by an ordinary human observer invariably has an outcome. 

The point is that a theory like that would nonetheless obviously fail to guarantee 
that for John in exactly the same way as the GRW theory does. 
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experimental evidence that the quantum state of any isolated phys­
ical system in the world ever fails to evolve in perfect accordance 
with the linear dynamical equations of motion.29 

And so there seem to be a number of good reasons for looking for 
a different angle on this whole business. 

29. That is: there hasn't been a shred of evidence that such failures ever take 
place, aside from the outcomes of certain introspective experiments that we carry 
out on ourselves. 



. . . 6 ... 

The Dynamics by Itself 

What It Feels Like to Be in a Superposition 

The trouble with the quantum-mechanical equations of motion, 
according to Chapter 4 (and according to the conventional wis­
dom), runs as follows: The equations of motion (if they apply to 
everything) entail that in the event that somebody measures (say) 
the color of a hard electron, then the state of the measured electron 
(e) and the measuring device (m) and the human experimenter (h), 
when the experiment is over, will be: 

(6.1) Vv'l(jbelieves e black)hJ"black")mJblack), 

+ !believes e white)hJ"white")mJwhite),) 

and of course, the state in (6.1) is (on the standard way of thinking) 
a state in which there is no matter of fact about what the color of 
the electron is, or about what the measuring device indicates its 
color to be, or even about what the experimenter takes its color to 
be; and the trouble with that (according to Chapter 4) is that we 
know, with certainty, by means of direct introspection, that there 
is a matter of fact about what we take the color of an electron like 
that to be, once we're all done measuring it; and so the state in 
( 6.1) can't possibly be the way that experiments like that end up; 
and so the linear equations of motion must (in some instances, at 
least) be false. 

But there's a small tradition of resistance to that conventional 
wisdom, which goes back to the late Hugh Everett III, who an­
nounced, in 1957, in a paper which is both extraordinarily sugges-
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tive and extraordinarily hard to understand, that he had discovered 
a way of coherently entertaining the possibility that the linear 
quantum-mechanical equations of motion are indeed (notwith­
standing the argument rehearsed above) the true and complete 
equations of motion of the whole world. And that tradition merits 
some of our attention here. 

What Everett announced (to put it a little more concretely) was 
that he had discovered some means of coherently entertaining the 
possibility that the states of things at the conclusions of color 
measurements of initially hard electrons really are (precisely as the 
linear equations of motion demand) superpositions like the one in 
(6.1); and the idea of what has become the canonical interpretation 
of Everett's paper (see, for example, DeWitt, 1970) is that the 
means of coherently entertaining that possibility that Everett must 
have had in mind (or perhaps the one which he ought to have had 
in mind) is to take the two components of a state like the one in 
(6.1) to represent (literally!) two physical worlds. The idea is that 
in the course of a measurement of (say) the color of a hard electron 
(the sort of measurement, that is, that leads to the state in (6.1)) 
the number of physical worlds there are literally increases from one 
to two, and that in each one of those worlds that color measure­
ment actually has an outcome and the observer actually has a 
determinate belief about that outcome, and that those worlds are 
subsequently absolutely unaware of one another. 

That's interesting. But there's a sense in which it can't be the 
whole story; there's a sense (that is) in which the above sort of talk, 
as it stands, isn't well defined. The trouble is that what worlds there 
are, at any particular instant, on this way of talking, will depend 
on what separate terms there are in the universal state vector at 
that instant; and what separate terms there are in that state vector 
at that particular instant will depend on what basis we choose to 
write that vector down in;1 and of course there isn't anything in the 

1. Here's what I mean: Suppose that a state like the one in (6.1) obtains; and 
consider (on this way of talking) what worlds that means that there presently are. 
What we're tempted to say (under these circumstances, on this way of talking) is 
that when (6.1) obtains there's one world in which the electron is black and there's 
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quantum-mechanical formalism itself which will pick any particu­
lar such basis out as the (somehow) right one to write things down 
in;2 and so, if there's going to be any objective matter of fact about 
what worlds there are, at any given instant, on the many-worlds 
way of talking, then some new general principle is going to have 
to be added to the formalism which does pick out some particular 
basis as the right one to write things down in. 

And of course the kind of principle we'll need is one that can 
guarantee that the worlds that come into being in the course of 
anything that can count as a measurement are all worlds in which 
there's a matter of fact about how that measurement comes out. 

And so figuring out exactly what that principle ought to be is 
going to amount to figuring out exactly which physical variables 
there need to be matters of fact about, in order for there to be 
matters of fact about how measurements come out. And of course 
the business of figuring that out (as we discovered in the course of 
trying to cook up postulates of collapse) turns out to be very 
difficult. 

And anyway, there's a more serious problem. There's a puzzle, 
when you talk like this, about what it could possibly mean to say 
(for example) that in the event that h carries out a color measure-

another world in which it's white. But note that the state in (6.1) could also have 
been written down like this: 

lf,ff(JQ+ )h + mJhard), + JQ-)h + mlsoft),) 

where 

JQ+ )h + m = lf,ff(Jbelieves e black)hJ"black")m + I believes e white)hJ"white")m) 

and 

JQ- )h + m = lf,ff(Jbelieves e black)hJ"black")m- I believes e white)hJ"white")m) 

and that makes things look (on this way of talking) as if there's one world in which 
the electron is hard and there's another in which it's soft! 

2. On the standard quantum-mechanical formalism, after all, the choice of a set 
of basis vectors in which to write states down has no physical significance whatso­
ever. 
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ment of a hard electron, the "probability" that that measurement 
will come out white is 1;2, The trouble is that that sort of a mea­
surement (on this way of talking) will with certainty give rise to 
two worlds, in one of which there's an h who sees that the outcome 
of the measurement is white, and in the other of which there's an 
h who sees that the outcome of the measurement is black; and there 
isn't going to be any matter of fact about which one of those two 
worlds is the real one, or about which one of those two h's is the 
original h. 

And there are myriad other difficulties with talking the many­
worlds talk too (see, for example, Barrett, 1992), but I guess we 
need not rehearse any more of them here. 

There are ways of making many-worlds talk sound less vulgar 
(which is to say: there are ways of making it sound less literal). But 
they don't get at what the real problems are. 

Sometimes it gets proposed (for example) that there is exactly 
one physical world but that (when states like (6.1) obtain) there are 
two incompatible stories about that world, or maybe about how h 
sees that world, which are both somehow simultaneously true. 3 

--It seems to me that that's really hard to understand. But one of 
the things that's obvious about it is that it runs into exactly the 
same sort of puzzle about what probabilities mean as the many­
worlds talk does. Suppose, for example, that an observer named h 
carries out a measurement (just like the one we talked about above) 
of the color of a hard electron. Try to figure out what it might mean 
to say of an experiment like that (if you try to talk like this) that 
the probability that its outcome will be black is 1;2. The trouble is 
that this sort of talk is going to entail, with certainty, that there are 
two stories about what happens in an experiment like that; and 
there isn't going to be any matter of fact about which one of those 

3. The most interesting attempt I know of at talking like that is Michael 
Lockwood's, in Mind, Brain, and the Quantum (Lockwood, 1989). Lockwood tries 
harder than anybody else does (with the possible exception of Lockwood's col­
league David Deutsch, whose ideas show up at a number of crucial points in Mind, 
Brain, and the Quantum) to think about what it means (that is: to think about 
what it's like) for there to be more than one true story, when a state like (6.1) 
obtains, about what h's experience is. 
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stories is the true one, and there isn't going to be any matter of fact 
about which one of those stories is the one that's about the orig­
inal h. 

I think it turns out to be a good deal more interesting to read 
Everett in a rather different way. 

Suppose that there is only one world, and suppose that there is 
only one full story about that world that's true, and suppose that 
the linear quantum-mechanical equations of motion are the true 
and complete equations of motion of the world, and suppose that 
the standard way of thinking about what i!l- means to be in a 
superposition is the right way of thinking about what it means to 
be in a superposition, and consider the question of what it would 
fee/like to be in a state like the one in (6.1) (that is: the question 
of what it would feel like to be the experimenter in a state like the 
one in (6.1)). 

That question wasn't confronted in Chapter 4. There didn't seem 
to be much of a point (back then) in confronting it. What seemed 
important was just that whatever it might feel like to be in a state 
like the one in (6.1), it certainly would not feel like what we feel 
like when we're all done measuring the color of a hard electron.4 

But (since it turns out not to be easy to cook up a good-looking 
theory of the collapse, and since it turns out that no theory of the 
collapse whatsoever is going to be able to preclude the development 
of states like the one in ( 6.1) in people who undergo the kind of 
brain surgery described at the end of Chapter 5, and since there 
aren't any normal experimental reasons for believing that there are 
any such things as collapses) things are different now. 

Here's a way to get started: 
Suppose that the linear quantum-mechanical equations of mo­

tion were invariably true and (consequently) that observers like the 
one described above frequently did end up, at the conclusions of 
color measurements, in states like the one in (6.1). 

Let's see if we can figure out what those equations would entail 

4. That is: what seemed important was just that it could be established (by means 
of the argument of the last paragraph) that as a matter of fact human experimenters 
don't end up in states like that, at the conclusions of those sorts of measurements. 
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about how an observer like that, in a state like the one in (6.1), 
would respond to questions about how she feels (that is: about 
what her mental state is). Maybe that will tell us something. 

The most obvious question to ask is: "What is your present belief 
about the color of the electron?" But that question turns out not 
to be of much use here. Here's why: Suppose that the observer in 
question (the one that's now in the state in (6.1)) gives honest 
responses to such questions; suppose, that is, that when her brain 
state is jbelieves e black) she invariably responds to such a question 
by saying the word "black," and when her brain state is jbelieves 
e white) she invariably responds to such a question by saying the 
word "white." The problem is that precisely the same linearity of 
the equations of motion which brought about the superposition of 
different brain states in the state in (6.1) in the first place will now 
entail that if we were to address this sort of a question to this sort 
of an observer, when (6.1) obtains, then the state of the world after 
she responds to the question will be a superposition of one in which 
she says "black" and another in which she says "white"; and of 
course it won't be any easier to interpret a "response" like that than 
it was to interpret the superposition of brain states in (6.1) that 
that response was intended to be a description of! 

But there are other sorts of questions that turn out to be more 
informative. 

Note, to begin with, that it follows from the linearity of the 
operators that represent observables of quantum-mechanical sys­
tems (the sort of linearity that was defined in equation (2.9)) that 
if any observable 0 of any quantum-mechanical system S has some 
particular determinate value in the state jA)s, and if 0 also has that 
same determinate value in some other state jB)s, then 0 will neces­
sarily also have precisely that same determinate value in any linear 
superposition of those two states.5 

5. That's an entirely commonsensical way for observables to behave, if you think 
it through. Suppose, for example, that there's a particle which is in a superposition 
of being located in the right half and in the left half of a certain box. What the 
linearity of the observables of a particle like that is going to entail (or rather, one 
of the things that it's going to entail) is that that particle is in an eigenstate of the 
observable "is the particle anywhere in the box at all?" with eigenvalue "yes." 
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Let's apply that to the superposition of states in (6.1). 
Suppose that we were to say this to h: "Don't tell me whether 

you believe the electron to be black or you believe it to be white, 
but tell me merely whether or not one of those two is the case; tell 
me (in other words) merely whether or not you now have any 
particular definite belief (not uncertain and not confused and not 
vague and not superposed) about the value of the color of this 
electron." 

Now, if (when we ask h that) the state !believes e black)h X 

l"black")mlblack), obtains, and if h is indeed an honest and compe­
tent reporter of her mental states, then she will presumably answer, 
"Yes, I have some definite belief at present, one of those two is the 
case"; and of course she will answer in precisely the same way in 
the event that !believes e white)hl"white")mlwhite), obtains. 

And so responding to this particular question in this particular 
way (by saying "yes") is an observable property of h in both of 
those states, and consequently (and this is the punch line) it will 
also be an observable property of her in any superposition of those 
two brain states, and consequently (in particular) it will be an 
observable property of her in (6.1). 

That's odd. Look what we've found out: On the one hand, the 
dynamical equations of motion predict that h is going to end up, 
at the conclusion of a measurement like the one we've been talking 
about, in the state in (6.1), and not in either one of the brain states 
associated with any definite particular belief about the color of the 
electron; on the other hand, we have just now discovered that those 
same equations also predict that when a state like ( 6.1) obtains, h 
is necessarily going to be convinced (or at any rate she is necessarily 
going to report) that she does have a definite particular belief about 
the color of the electron. And so when a state like (6.1) obtains, h 
is apparently going to be radically deceived even about what her 
own occurrent mental state is. 

And so it turns out that there was a hell of a lot too much being 
taken for granted when we got convinced (back in Chapter 4) that 
there is some particular point in the course of the sort of measure­
ment we've been talking about by which a collapse of the wave 
function must necessarily already have taken place, some particular 
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point (that is) at which the dynamical equations of motion together 
with the standard way of thinking about what it means to be in a 
superposition somehow flatly contradicts what we unmistakably 
know to be true of our own mental lives. 

Let's go on. Suppose that h carries out a measurement of the color 
of a hard of electron with a color measuring device called ml, and 
suppose that when that's done (that is: when a state like ( 6.1) 
obtains) h carries out a second measurement of the color of that 
electron, with a second color measuring device called m2. When 
that's all done, the state of h and of the two measuring devices and 
the electron (if the measuring devices are good, and if h is compe­
tent, and if everything evolves in accordance with the linear dynam­
ical equations of motion) is going to look like this: 

(6.2) V...ff(lbelieves outcome of first measurement is "black" 
and believes outcome of second measurement is 
"black ")hi" black ")mll" black ")m2lblack). 

+ !believes outcome of first measurement is "white" 
and believes outcome of second measurement is 
"white, )hi "white, )mll "white, )m21white) e) 

And suppose that at that point (when (6.2) obtains) we were to say 
to h: "Don't tell me what the outcomes of either of those two color 
measurements were; just tell me whether or not you now believe 
that those two measurements both had definite outcomes, and 
whether or not those two outcomes were the same." 

It will follow from the same sorts of arguments as we gave above 
that h's response to a question like that (even though, as a matter 
of fact, on the standard way of thinking, neither of those experi­
ments had any definite outcome) will necessarily be: "Yes, they both 
had definite outcomes, and both of those outcomes were the same." 

And it will also follow from the same sorts of arguments that if 
two observers were both to carry out measurements of the color of 
some particular initially hard electron, and if they were subse­
quently to talk to one another about the outcomes of their respec­
tive experiments (if they were both, that is, to check up on one 
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another), then both of those observers will report, falsely, that the 
other observer has reported some definite particular outcome of her 
measurement, and both of them will report that that reported 
outcome is completely in agreement with her own. 

Let's make up a name for all that. Let's say that when a state like 
(6.1) obtains, then (even though there isn't any matter of fact about 
what the color of the electron is, and even though there isn't even 
any matter of fact about what h's belief about the color of the 
electron is) what the dynamics entails is that h "effectively knows" 
what the color of the electron is. 

Let's go on some more. Suppose that h is confronted with an infinite 
collection of electrons, all of which are initially hard, and that h 
undertakes to measure the color of each one of those electrons. 

Before those measurements start, the state of h and of those 
electrons (whose names are 1, 2, ... ) and of h's color measuring 
devices (whose names are, respectively, m1, m2, . .. ) is: 

( 6.3} iready)hiready)mtlhard)liready)m2lhard)ziready)m3ihard)3 ... 

Once the measurement of the color of electron 1 is done, the state 
lS: 

(6.4} VV2(ibelieves 1 black)hl"black")mtlblack)t 

+ !believes 1 white)hl"white")mtlwhite)t} 

X lready)m2ihardhlready)m3ihard)3 ... 

And once the measurement of the color of electron 2 is done, the 
state is: 

(6.5} 1Af4{(ibelieves 1 black and 2 black)hl"black")mt X 

l"black")m2lblack)tlblack)z) 

+ (!believes 1 black and 2 white)hl"black")mt X 

l"white")m2lblack)liwhite}z) 

+ (!believes 1 white and 2 black)hl"white")mt X 

l"black")m21white)tlblack)z) 
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+ {!believes 1 white and 2 white)hl"white")mt X 

l"white")m21white)tlwhite}2)} 

X lready)mJihard)J ... 

And so on. The number of separate mathematical terms in the state 
vector of the world (if you write it out in the sort of basis that's 
used here) will increase geometrically (like the numbers of the 
branches in the diagram in figure 6.1, as you work your way up} 
as the number of color measurements increases. 

Now, suppose that once the first N of those measurements are 
complete we say this to h: "Don't tell me what the color of electron 
1 or electron 2 or any particular one of the first N electrons turned 
out to be; tell me merely whether or not you believe that each one 
of those electrons now has a definite color, and tell me also (if the 
answer to that first question is yes) what fraction of those first N 
electrons turned out to be black." 

5th -

4th 

3rd 

2nd 

1st 

measurement 

Figure 6.1 

white ..,.<E----- > black 
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That won't tell us much, as it stands. The answer to the first 
question (as we've already seen) is going to be "yes" (and moreover, 
at that point, it's going to be a physical fact about the world that 
h effectively knows the color of each of those first N electrons). But 
of course h isn't going to produce any coherent answer to the 
second question; once h has responded to that question (if h is a 
competent converser on these matters), the state of the world is 
going to be a superposition of states (like the superposition that 
arises in the event that we ask h what the color of the electron is 
when (6.1) obtains) in which h answers that question in various 
different ways. 

But here's something curious: It happens that in the limit as N 
goes to infinity (that is: in the limit as the number of color mea­
surements which h has so far performed goes to infinity}, the state 
of the world will, with certainty, approach a state in which h will 
answer that question in a perfectly determinate way, and in which 
the answer h gives will with certainty be "1;2" (which is, of course, 
precisely what ordinary quantum-mechanics will predict, with cer-
tainty, about that response, in that limit).6 · 

And that turns out to be an instance of something a good deal 

6. It isn't hard to see why that sort of thing ought to be true. Here's how to start 
out: Consider (for example) an infinite collection of electrons (let's call them 1, 2, 
3, ... ), all of which are in the lhard) state; and consider the following observable 
of that collection: ON= (1.1-J) X (the number of black electrons among the first N 
electrons). 

Now, ordinary quantum mechanics (that is: quantum mechanics with a collapse) 
entails that if the color of each one of those electrons were to be measured, then 
(since there are infinitely many of those electrons in this collection) precisely half 
of those measurements would with certainty come out "black," and precisely half 
of them would with certainty come out "white." Moreover, ON (for any value of 
N) is compatible with the colors of every one of those electrons. And so it follows 
that ordinary quantum mechanics entails that as N approaches infinity, the prob­
ability that a measurement of the value of ON on the collection of electrons 
described above will find the value 1;2 will approach 1. And so it follows that that 
collection of electrons (prior to any measurement) must be in an eigenstate of 
whatever operator it is that ON approaches as N approaches infinity, with 
eigenvalue lf2. 

And it will follow from all that that whether or not there are ever any such things 
as collapses, the state of a composite system consisting of that collection of initially 
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more general, which runs as follows: Suppose that an observer h is 
confronted with an infinite ensemble of identical systems in identi­
cal states and that she carries out a certain identical measurement 
on each one of them. Then, even though there will actually be no 
matter of fact about what h takes the outcomes of any of those 
measurements to be, nonetheless as the number of those measure­
ments which have already been carried out goes to infinity, the state 
of the world will approach (as a well-defined mathematical limit) 
a state in which the reports of h about the statistical frequency of 
any particular outcome of those measurements will be perfectly 
definite, and also perfectly in accord with the standard quantum­
mechanical predictions about what that frequency ought to be. 

So it turns out not to be altogether impossible (even if the standard 
way of thinking about what it means to be in a superposition is the 
right way of thinking about it) that the state we end up in at the 
conclusion of a measurement of the color of a hard electron is the 
one in (6.1). And so everything we've been thinking about the 
measurement problem up till now isn't right. 

And what all this obviously suggests is that maybe there just isn't 
any such thing as a measurement problem. 

That is: maybe (even if the standard way of thinking about what 
it means to be in a superposition is the right way of thinking about 
what it means to be in a superposition) the linear dynamical laws 
are nonetheless the com lete laws of the evolution of the entire 
~, and rna be all of the a earances to the contrary 1 e e 
appearance that experiments have outcomes, an t e appearance 
that the world doesn't evolve deterministically). turn out to be just 
the sorts of delusions which those laws themselves can be shown 
to bring on! 

hard electrons and of a competent observer who has just carried out measurements 
of the colors of all those electrons will, with certainty, be an eigenstate of that 
observer's reporting (if she's asked) that the value of whatever operator it is that 
ON approaches as N approaches infinity is 1;2. 

A detailed mathematical discussion of all this stuff (with much nicer proofs than 
the one above) can be found in the doctoral dissertation of Jeff Barrett (1991). 
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This is an amazingly cool idea (let's call it "the bare theory~, 
and this is the idea that itstrikes me as interesting to read into 
·Everett's paper.7 

Notwithstanding all the stuff we've just learned, however, it seems 
to me that the bare theory can't be quite right either. 

Note, for example, that if the bare theory is true, then there will 
be matters of fact about what we think about (say) the frequencies 
of "black" outcomes of measurements of the color of hard elec­
trons only (if at all) in the limit as the number of those measure­
ments goes to infinity. And so, if the bare theory is true (and since 
only a finite number of such measurements has ever actually been 
carried out by any one of us, or even in the entire history of the 
world), then there can't now be any matter of fact (notwithstanding 
our delusion that there is one) about what we take those frequen­
cies to be. And so, if the bare theory is true, then there can't be any 
matter of fact (notwithstanding our delusion that there is one) 
about whether or not we take those frequencies to be in accordance 
with the standard quantum-mechanical predictions about them. 
And so, if the bare theory is true, it isn't clear what sorts of reasons 
we can possibly have for believing in anything like quantum me­
chanics (which is what the bare theory is supposed to be a way of 
making sense of) in the first place.8 

And as a matter of fact, if the bare theory is true, then it seems 
extraordinarily unlikely that the present quantum state of the world 
can possibly be one of those in which there's even a matter of fact 
about whether or not any sentient experimenters exist at all. And 
of course in the event that there isn't any matter of fact about 

7. Of course, the hypothesis that the equations of motion are always exactly 
right is also the sort of thing that Daneri, Loinger, and Prosperi and all those other 
guys in note 16 of Chapter 5 took themselves to be adherents of. 

The trouble is that (astonishingly) it never seems to have occurred to those guys 
that it follows from that hypothesis that experiments almost never have outcomes; 
and so none of them ever worried about how to come to terms with that; and so 
none of them ever entered into the sorts of considerations that we're in the midst 
of here. 

8. This very nice way of putting the problem is due to Joshua Newman. 
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whether or not any sentient experimenters exist, then it becomes 
unintelligible even to inquire (as we've been doing here) about what 
sorts of things such experimenters will report. 

And then (as far as I can tell) all bets are off. 

And so it seems to me not to be entertainable, in any of the ways 
we've talked about so far, or in any other way I know of, that the 
linear quantum-mechanical equations of motion are the true and 
complete equations of motion of the whole world. And that's that. 

But there are nonetheless interesting things to be learned about 
the measurement problem (things that it will be well to bear in mind 
in connection with the problems we ran into at the end of the last 
chapter, and in connection with problems we will run into at the 
end of the next chapter) in this stuff about what superpositions feel 
like. 

What that stuff shows, I think, is that precisely that feature of 
those equations which makes it clear that they cannot possibly be 
the true and complete equations of motion of the whole world (that 
is: their linearity) also makes it radically unclear how much of the 
world and which parts of the world those equations possibly can 
be the true and complete equations of motion of. 

What I think it shows (to put it another way) is that there can 
be no such thing as a definitive list of what there have absolutely 
got to be matters of fact about which is scientifically fit to serve as 
an "observational basis" from which all attempts at fixing quantum 
mechanics up must start out. 

What I think it shows is that what there are and what there aren't 
determinate matters of fact about, even in connection with the most 
mundane and everyday macroscopic features of the external phys­
ical world, and even in connection with the most mundane and 
everyday features of our own mental lives, is something which we 
shall ultimately have to learn (in some part) from whatever turns 
out to be the best way of fixing quantum mechanics up.9 

9. But note that that learning will be no straightforward matter, since one of the 
things that all this raises difficult questions about is the very business of seeking 
out the best way of fixing quantum mechanics up! 
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The Dynamics Almost by Itself 

Let's start again. 
Suppose that there's just one world. And suppose that there's just 

one complete story of the world that's true. 
And suppose that quantum-mechanical state vectors are com­

plete descriptions of physical systems. And suppose that the dynam­
ical equations of motion are always exactly right. 

And suppose that we should like to insist, as a matter of princi­
ple, that healthy people can correctly report whether or not they 
themselves have any determinate belief about (say) the position of 
some particular pointer. 

Then (since the dynamical equations of motion entail that 
healthy people in superpositions of brain states corresponding to 
different beliefs about the position of some particular pointer will 
with certainty report that they have some determinate belief about 
the position of that pointer) there's going to have to be something 
funny about how mental states supervene on brain states.10 

Let's see if we can cook up something funny like that. 
Think of h when she's about to measure the color of the hard 

electron, when she's in her "ready" state. When the measurement 
is over, the physical state of h and her measuring device and the 
electron is going to be the one in (6.1). That's what's dictated, with 
certainty, by the deterministic equations of motion. 

Suppose, however, that all that's true, but that the evolution of 
h's mental state in the course of a measurement like this one is 
explicitly probablistic. Here's how things would go in this particu­
lar case: h starts out (with certainty) in the mental state associated 
with lready)h, and she ends up (with equal probabilities) either in 
the mental state associated with !believes e black)h or in the mental 
state associated with jbelieves e white)h.U What's certain about how 
she ends up, though, is that she ends up (just as she testifies she 

10. That is, it's going to have to be the case that somebody's believing that 
such-and-such is not identical with some particular state of that person's brain (the 
state we've been calling !believes such-and-such)) obtaining. 

11. It's obvious how this ought to be generalized: In the event that the initial 
state of the electron is alwhite) + blblack), and in the event that h measures that 
electron's color, then (as above) h will start out, with certainty, in the mental state 
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does) with some perfectly determinate belief about what the color 
of the electron is. 12 

So far so good. Let's try to take it a little further. 
Whatever belief h does end up with, when (6.1) obtains, is 

necessarily going to be a false belief. But there are very natural ways 
of cooking things up so as to guarantee that that belief will none­
theless have an important kind of effective validity, at least in so 
far as h is concerned;13 there are ways of cooking things up (that 
is) so as to guarantee that the future evolution of h's mental state 
will proceed, in general, exactly as if h's beliefs were true. 

Here's what I mean. 
Suppose that the mental state that h ends up in when (6.1) 

obtains (call that time t) happens to be the one associated with 
!believes e black)h, and suppose that she subsequently repeats that 
color measurement (with another color measuring device) on that 
same electron. When that's done, the physical state of things is 
going to be the one in (6.2), and h will with certainty (on this 
proposal) end up in the mental state associated with !believes out­
come of first measurement is "black" and believes outcome of 
second measurement is "black")h.14 And that's precisely how h's 
mental state would have ended up, with certainty (on this pro­
posal), in the event that her belief that the electron was black at 
timet (which was false) had been true. 

And suppose (just as above) that a state like the one in (6.1) 

associated with lready)b, and she'll end up in the mental state associated with 
!believes e white}h with probability lal2, and she'll end up in the mental state 
associated with !believes e black)h with probability lbl2. 

12. This sort of thing was first suggested quite a long time ago, but for somewhat 
different reasons (for reasons which had nothing to do with what the equations of 
motion dictate about what it feels like to be in a superposition) by Bernard 
d'Espagnat (1971). 

13. Of course, there was a sense in which it seemed right to say that h effectively 
knows what the color of the electron is, when (6.1) obtains, on the bare theory 
too. But what we're talking about now will amount to something a good deal 
stronger than that. 

14. And of course in the event that h's mental state at t happens to be the one 
associated with !believes e white)h, then h will with certainty end up in the mental 
state associated with I believes outcome of first measurement is "white" and believes 
outcome of second measurement is "white")b. 
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obtains, and suppose that h's mental state happens to be the one 
associated with !believes e black)h, and suppose that she subse­
quently carries out a measurement of the hardness of that same 
electron; then, when that's done, the physical state of things is going 
to be 

(6.6) lfi<r{(jbelieves outcome of first measurement is "black" and 
believes outcome of second measurement is 
"hard")bl"black")mll"hard")m2lhard),) 

+ (!believes outcome of first measurement is "black" and 
believes outcome of second measurement is 
"soft")hl"black")mll"soft")m2isoft).) 

+ (!believes outcome of first measurement is "white" and 
believes outcome of second measurement is 
"hard")bl"white")mll"hard")m21hard),) 

- (!believes outcome of first measurement is "white" and 
believes outcome of second measurement is 
"soft")hl "white")mll"soft")m2isoft),)} 

(where m1 is the color measuring device and m2 is the hardness 
measuring device), and the probability that h will end up in the 
mental state associated with I believes outcome of first measurement 
is "black" and believes outcome of second one is "hard")h will be 
l;i, and the probability that she will end up in the mental state 
associated with !believes outcome of first measurement is "black" 
and believes outcome of second measurement is "soft")h will be 
1;2, and the probability of her ending up in the mental states 
associated with either !believes outcome of first measurement is 
"white" and believes outcome of second measurement is "hard")h 
or !believes outcome of first measurement is "white" and believes 
outcome of second measurement is "soft")h will be 0. 

And suppose that a state like the one in ( 6.4) obtains and that 
h's mental state happens to be the one associated with !believes 1 
black)h, and suppose that h now carries out a measurement of the 
color of electron 2 (in which case the physical state of the world 
will become the one in (6.5)). Then (on this proposal) the proba-



THE DYNAMICS BY ITSELF 

129 

bility of h's ending up in the mental state associated with !believes 
1 black and 2 black)h will be 1;2, the probability of h's ending up 
in the mental state associated with !believes 1 black and 2 white)h 
will be 1J2, and the probabilities of h's ending up in the mental states 
associated with either !believes 1 white and 2 black)h or !believes 1 
white and 2 white)h will both be 0. 

And so on.15 

That (technically) will do the trick. On this proposal, quantum-~ 
mechanical wave functions are complete descriptions of the physi­
cal states of things, and those wave functions invariably evolve in 
perfect accordance with the dynamical equations of motion, and it 
makes no physical difference at all what basis we choose to write 
those wave functions down in, 16 and measurements carried out b_y 
sentient observers (that is: by observers with minds) invariabl have 

eterminate outcomes in t e minds of those observers, and the 
statistical distributions of those outcomes will be the usual quan­
tum-mechanical ones, and there isn't anything mysterious about 
how probabilities come up in this theory, 17 and the reports of 
sentient observers about their own mental states will invariably, on 
this proposal, be correct. 

15. What's been said so far (a slightly more detailed account of which, by the 
way, can be found in Albert and Loewer, 1988) doesn't amount to a completely 
general set of laws of the evolution of mental states; but laws like that can be cooked 
up, and they can be cooked up in such a way as to guarantee that everything I've 
said about them so far will be true. 

16. Of course, there will (on this picture, and on every way of attempting to 
make sense of quantum mechanics) be some particular basis of brain states which 
correspond to (as it were) "eigenstates of mentality"; but what basis that is will by 
no means be a matter of conventional choice; what basis that is will entirely depend 
(rather) on the physical structure of the brains in question. The brain state that 
corresponds to believing that a certain electron is black, for example, will presum­
ably be the one which (purely in virtue of the dynamical equations of motion) 
disposes its owner to respond to an utterance like "What color do you believe the 
electron to be?" with an utterance like "I believe the electron to be black." And of 
course what brain state that will be will be a completely basis-independent, straight­
forwardly physical question! 

17. The way that probabilities come up in this theory, after all, is that they get 
put into it by fiat; and that fiat stipulates that those probabilities are to be under­
stood in precisely the conventional way. 
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And of course this view of the world is a thoroughly realist one 
(that is: this view entails that there is invariably a single correct 
objective description of the entire physical and mental universe, 
even if nobody happens to know what that description is); and this 
view (even though it's an explicitly dualist view) entails that the 
mental parts of the world have no effects whatever on its physical 
parts (that is: this view isn't at all like any of the dualist theories 
OfCollapse, this view entails that the physical world is causally_ 
closed). 
~the dualism of this sort of a picture is nonetheless pretty bad. 
On this proposal (for example) all but one of the terms in a 
superposition like the one in (6.1) represent (as it were) mindless 
hulks; and which one of those terms is not a mindless hulk can't 
be deduced from the physical state of the world, or from the 
outcome of any sort of an experiment; and it will follow from this 
proposal that most of the people we take ourselves to have met in 
our lives have as a matter of fact been such hulks, and not really 
people (not really animate, that is) at all! 

Here's a way to partly fix that up: 
Suppose that every sentient physical system there is is associated 

not with a single mind but rather with a continuous infinity of 
minds; and suppose (this is part of the proposal too) that the 
measure of the infinite subset of those minds which happen to be 
in some particular mental state at any particular time is equal to 
the square of the absolute value of the coefficient of the brain state 
associated with that mental state, in the wave function of the world, 
at that particular time (so that, for example, when states like (6.1) 
obtain, half of h's continuous infinity of minds will believe that the 
electron is black, and half of them will believe that the electron is 
white). 

The time evolution of each individual mind, on this proposal, is 
precisely the probabilistic one described above (the one that we 
cooked up for the single-mind proposal), but since (on this pro­
posal) there are always a continuous infinity of minds (or else no 
minds at all) in any particular mental state, the evolution of the 
minds of any particular sentient observer as a set is invariably (that 
is: with probability 1) going to be deterministic. Moreover, at any 
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particular instant, the mental states of the minds of any particular 
observer will necessarily be distributed in accordance with the 
prescription of the last paragraph. So this proposal is going to entail 
that what you might call the "global" mental state of every sentient 
being is uniquely fixed by the physical state of the world.18 

And there's something else about this kind of a picture that's nice: 
this kind of a picture is local. That's surprising. That's precisely the 
sort of thing that Bell's theorem was thought to have ruled out. 
Let's see how it works. 

Consider an EPR-type state: 

(6.7) lblack)tlwhiteh- lwhite)tlblackh 

and suppose that electron 1 is located at point 1 and that electron 
2 is located at point 2 and that an observer named h1 {located at 
point 1) measures some spin observable of electron 1 and that an 
observer named h2 {located at point 2) measures some spin observ­
able {not necessarily the same one) of electron 2. 

What Bell proved is that there can't be any local way of account­
ing for the observed correlations between the outcomes of measure­
ments like that; but of course {and this is the crux of the whole 
business) the idea that there ever are matters of fact about the 
"outcomes" of a pair of measurements like that is just what this 
sort of a picture denies! 

Let's go through it carefully. 
At the conclusion of a pair of measurements like the one just 

described, on this picture, the state of the world is going to be a 
superposition of states, in each of which each of those two mea­
surements have one or the other of their two different possible 
outcomes. And at that point, on this picture, no matter what spin 
observable of electron 1 gets measured by h1 and no matter what 
spin observable of electron 2 gets measured by h2, half of h1's 
minds are going to believe that the outcome of whatever measure­
ment she did was + 1, and the other half of her minds are going to 

18. This is the so-called many-minds interpretation of quantum mechanics, 
which was first proposed by Barry Loewer and myself (Albert and Loewer, 1988). 
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believe that the outcome of whatever measurement she did was -1, 
and half of h2's minds are going to believe that the outcome of 
whatever measurement she did was + 1, and the other half of her 
minds are going to believe that the outcome of whatever measure­
ment she did was -1. (The reader will have no trouble in explicitly 
confirming all this, and in confirming that none of this depends on 
the time order in which the two measurements get carried out.) 

And this is where things get a little more subtle. 
What it's hard not to do, at first, at this point in the story, is to 

imagine that there are matters of fact (when this sort of a superpo­
sition obtains) about the degree to which the states of the minds of 
h1 and the states of the minds of h2 are correlated with one 
another. 

But the thing is that there aren't any matters of fact about 
anything like that. 

All that ever actually happens (insofar as any question of corre­
lations is concerned) is that at the point (later on) when h1 actually 
communicates with h2 (and that communication is of course going 
to be mediated by some local interaction and governed by the local 
equations of motion), then each one of each of these two observers' 
minds will develop some particular belief about whether or not the 
outcome of the other observer's measurement was correlated or 
anti-correlated with the outcome of her own. And the probability 
of developing any particular such belief (for each of the two ob­
servers separately) is going to be precisely the usual quantum­
mechanical one. And (as I said before) there simply isn't going to 
be any matter of fact about whether or not the outcomes of these 
two measurements, or the beliefs of these two observers, are ever 
"really" correlated with one another. 

An Epistemological Remark 

One of the things that the many-minds interpretation entails (as 
I've already mentioned) is that the beliefs of any sentient observer 
about the overall quantum state of the world will typically be 
mistaken. 

Nothing, even in principle, can be done about that. No matter 
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how much the observer in question knows of what the true laws 
of the world are, and no matter what observables she is capable of 
measuring, there can't be any experimental means whatever (as a 
little reflection will show) of reliably finding out what the overall 
quantum state of the world is, or (for that matter) what the quan­
tum state of anything in the world is. 

The sum total of what any such observer can conclude about the 
overall quantum state of the world (or, more precisely: the sum 
total of what any particular one of such an observer's minds can 
conclude about the overall quantum state of the world), from the 
outcomes of whatever experiments she does, is that that state 
(whatever it is) is not orthogonal (that is: not perfectly orthogonal) 
to the effective state that those outcomes pick out. And that's all. 

And that's not much. 
And that fact has curious consequences. It turns out, for exam­

ple, that the Lorentz-covariance of the dynamical equations of 
motion of relativistic quantum field theories requires that the state 
that's associated with the vacuum in theories like that is necessarily 
not quite perfectly orthogonal to states in which there are electrons 
and baseballs and people and buildings (and all the other stuff 
we're used to) around. 

And so what we've just been talking about is going to entail that 
on relativistic-field-theoretic versions of (say) a many-minds pic­
ture, nothing in our empirical experience (that is: nothing about 
the histories of our phenomenal states) is incompatible with the 
hypothesis that the quantum state of the universe is (for now and 
for all time) that vacuum state! 

And that will throw an odd light (for example) on questions 
about where the universe initially came from. 

But going through the details of all this would require a more 
technical discussion than I want to get into just now.19 

19. I hate lines like that. But let the reader take note that this is the only one of 
them in this book. 

Anyway, a slightly less incomplete account of this stuff (together with some 
further references and some remarks about how these ideas are and aren't related 
to the literature on the possibility that the universe is a vacuum fluctuation) can be 
found in a little paper of mine from a couple of years ago (Albert, 1988). 



. . . 7 ... 

Boh m 's Theory 

There's an entirely different way of trying to understand all this 
stuff (a way of being absolutely deviant about it, a way of being 
polymorphously heretical against the standard way of thinking, a 
way of tearing quantum mechanics all the way down and replacing 
it with something else) which was first hinted at a long time ago by 
Louis de Broglie (1930), and which was first developed into a 
genuine mathematical theory back in the fifties by David Bohm 
(1952), and which has recently been put into a particularly clear 
and simple and powerful form by John Bell (1982), and that's what 
this chapter is going to be about. 

Bohm's theory has more or less (but not exactly) the same em­
pirical content as quantum mechanics does, 1 and it has much of the 
same mathematical formalism as quantum mechanics does too, but 
the metaphysics is different. 

The metaphysics of this theory is exactly the same as the meta­
physics of classical mechanics. 

Here's what I mean: 
This theory presumes (to begin with) that every material particle 

in the world invariably has a perfectly determinate position. And 
what this theory is about is the evolution of those positions in time. 
What this theory takes the job of physical science to be (to put it 
another way) is nothing other than to produce an account of those 

1. Of course, there can't be any theory that has exactly the same empirical 
content as quantum mechanics does, since quantum mechanics (in its present 
unfinished condition, in the absence of any satisfactory postulate of collapse) 
doesn't have any exact empirical content! 

134 
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evolutions; and the various nonparticulate sorts of physical things 
that come up in this theory (things like force fields, for example, 
and other sorts of things too, of which we'll speak presently) come 
up (just as they do in classical mechanics) only to the extent that 
we find we need to bring them up in order to produce the account 
of the particle motions. 

And it turns out that the account which Bohm's theory gives of 
those motions is completely deterministic. And so, on Bohm's the­
ory, the world can only appear to us to evolve probabilistically (and 
of course it does appear that way to us) in the event that we are 
somehow ignorant of its exact state. And so the very idea of 
probability will have to enter into this theory as some kind of an 
epistemic idea, just as it enters into classical statistical mechanics. 

What the physical world consists of besides particles and besides· 
force fields, on this theory, is (oddly) wave functions. That's what 
the theory requires in order to produce its account of the particle 
motions. The quantum-mechanical wave functions are conceived 
of in this theory as genuinely physical things, as something some­
what like force fields (but not quite), and anyway as something 
quite distinct from the particles; and the laws of the evolutions of 
these wave functions are stipulated to be precisely the linear quan­
tum-mechanical equations of motion (always, period; wave func­
tions never collapse on this theory); and the job of these wave 
functions in this theory is to sort of push the particles around (as 
force fields do), to guide them along their proper courses; and there 
are additional laws in the theory (new ones, un-quantum-mechan­
ical ones) which stipulate precisely how they do that.2 

2. Perhaps all this is worth spelling out in somewhat more pedantic detail. Here's 
the idea: 

What quantum mechanics takes the wave function of a particle to be is merely a 
certain sort of mathematical representation of that particle's state. 

What this theory takes the wave function of a particle to be, on the other hand, 
is a certain sort of genuinely physical stuff. 

And the physical properties of such wave-functions-considered-as-stuff are (as 
with force fields) their amplitudes at every point in space. 

And those amplitudes will invariably have determinate values (just as they invari­
ably do, as purely mathematical objects, in quantum mechanics). 
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Setting Up 

Let's start out by simply describing the mathematical formalism of 
the theory. 

We'll begin with the case of a single structureless particle that's 
free to move around in only a single spatial dimension (since that 
case will turn out to be a particularly simple one, and a particularly 
instructive one), and then we'll build up from there. 

The theory stipulates that the velocity of a particle like that at 
any particular time is given by the value of something called the 
velocity function V(x) (which is a function of position, like the 
wave-function), evaluated at the point P at which the particle 
happens to be located at the time in question. Moreover, the theory 
stipulates that the velocity function for any particle at any time can 
be obtained (as a matter of law) from its wave function, at that 
same time, by means of a certain definite algorithm. 

Let's set up a notation. Call the algorithm V{ ... }, where the 
symbol { . . . } will serve as an empty slot into which any mathe­
matical function of position can in principle be inserted. 3 What the 
theory is saying is that the velocity function V(x) for any single 
structureless particle, moving around in a single spatial dimension, 

It will frequently happen, of course (since the evolutions of wave functions here 
will invariably proceed in accordance with the dynamical equations of motion), 
that the wave function of a certain particle, at a certain instant, will fail to be an 
eigenfunction of one or another of the operators which the quantum-mechanical 
formalism associates with physical observables; but that will merely connote some­
thing about the shape of the wave-function-stuff here, something about its mathe­
matical form, and not (as in quantum mechanics) that there is some physical 
property of the world, or some potential physical property of the world, which 
somehow lacks a definite value! 

But of all this more later. 
3. This algorithm, by the way, is stipulated to be precisely the same under all 

circumstances, irrespective of what the mass of the particle is, or what its charge 
is, or what forces it is subject to, or how those forces depend on space and time, 
or anything. All of those factors, of course, do play a role in determining the 
evolution of the wave function (since they all enter into the dynamical equations 
of motion); what they do not play any role in, however, is the way in which velocity 
function is obtained from the wave function. 
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at any particular time, will (as a matter of law) invariably be equal 
to the function V{\jl(x)}, where \jl(x) is the wave function of that 
same particle at that particular time. And the theory further stipu­
lates (as I mentioned above) that the velocity of that particle, at 
that time, will be equal to the number V(P), where P is the position 
of the particle at that time. 

And so if we're given the wave function of such a particle at some 
particular time t, and if we're also given its position at that time, 
then we can straightforwardly calculate its velocity at that time 
(and it's in this sense that the wave function can be said to push 
the particle around, to tell the particle where to go next). 

And of course that will suffice, in principle, to calculate the 
position of the particle just an instant after t (since the velocity is 
just the rate of change of that position); and the wave function of 
the particle at that next instant can in principle be calculated too, 
with certainty, in the usual way, from the quantum-mechanical 
equations of motion; and so the velocity of the particle at that next 
instant can be obtained as well, and then the whole process can be 
repeated once again (in order to calculate the position of the parti­
cle and its wave function at the instant after that), and so on (as 
many more times as we like, up to whatever point in the future we 
choose). 

And so the position of a particle and its wave function at any 
given time can in principle be calculated with certainty, on this 
theory, from its position and its wave function at any other time, 
given the external forces to which that particle is subject in the 
interval between those two times. 

Suppose that the wave function of a particle at some particular 
initial time t is \jl(x,t), and suppose that all of the forces are fixed 
in advance, and consider, in such circumstances (with the initial 
wave function held fixed, and with all of the external forces held 
fixed), how the motion of the particle will depend on its initial 
position. 

Different initial positions will of course (in accordance with the 
laws of motion of this theory) pick out different trajectories; and 
each one of those different trajectories (in virtue of what it means 
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to be a trajectory) will pick out some particular determinate posi­
tion for the particle at every particular instant later than t. 

Imagine a gigantic swarm of possible initial positions, and imag­
ine the swarm of positions at some particular later time t', which 
that initial swarm (in accordance with the laws of this theory, given 
the initial wave function and given the external forces) evolves into. 

And now imagine a very particular sort of swarm of possible 
initial positions. Remember (from Chapter 2) that the conventional 
quantum-mechanical prescription stipulates that the probability 
that a measurement of the position of a particle will find the particle 
to be located at any particular point in space will be equal to the 
absolute value of the square of the particle's wave function, at the 
time of the measurement, at that point. Imagine, then, that our 
swarm of possible initial positions happens to be distributed (with 
respect to the wave function) just as the quantum-mechanical prob­
abilities are: imagine that the density in space of the possible posi­
tions in the initial swarm happens to be everywhere equal to the 
square of the absolute value of the initial wave function. 

If that's so (and this is the punch line), then it can be shown to 
follow from the dynamical equations of motion for the wave func­
tion and from the form of the algorithm for the calculation of the 
velocity functions that the density in space of the positions in the 
later swarm (no matter what later time t' happens to be) will 
likewise be everywhere equal to the square of the absolute value of 
the wave function then (at the later time). That's what's depicted 
in figure 7 .1. 

Here's another way to put it. Consider the following fairy tale. 
Suppose that the form of a certain single-particle wave function at 
a certain initial moment t is 'lf(x,t); and suppose that at just that 
particular moment God places the particle associated with that 
wave function (which was absent before, in this fairy tale) some­
where in the world, and suppose that God makes use of some 
genuinely probabilistic procedure for deciding precisely where to 
put that particle, and suppose that that procedure happens to entail 
that the probability that the particle gets put at any particular point 
is equal to the square of the absolute value of the particle's wave 
function at that point. And suppose that thereafter God does no 
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wave function at t 

Figure 7.1 

more meddling and allows everything to evolve strictly in accor­
dance with the deterministic laws of Bohm's theory. Then it will be 
the case that the probability that the particle will be located at any 
particular point in space at any later time (given the way things 
were initially set up) will be equal to the square of the absolute 
value of the particle's wave function at that point at that later time. 

Here's a more compact way to put it: What happens (and this is 
what the algorithm was explicitly cooked up in order to guarantee; 
and, as a matter of fact, this is a way of uniquely specifying 
precisely what that algorithm is) is that the particle gets carried 
along with the flows of the quantum-mechanical probability am­
plitudes in the wave function, just like (say) a cork floating on a 
nver. 

Here's how to parlay that into something useful: 
There is what amounts to a fundamental postulate of Bohm's 
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theory {let's call it the statistical postulate) which stipulates that if 
you're given the present wave function of a certain particle, and if 
you're given no information whatever about the present position 
of that particle, then, for the purposes of making calculations about 
motions of the particle in the future, what ought to be supposed, 
what ought to be plugged in to the formalism, is (precisely as it is 
in the fairy tale) that the probability that the particle is presently 
located at any particular point in space is equal to the square of 
the absolute value of its present wave function at that point. 

That will guarantee (because of how the velocity algorithm 
works, because of how the particles always get carried along with 
the probability flows) that such calculations, under such circum­
stances, will necessarily entail that the probability that the particle 
will be located at any particular point in space at any particular 
future time will invariably be equal to the square of the absolute 
value of its wave function then (at the future time) at that point. 
And so in the event that we're given the present wave function of 
a single isolated particle, and we're given the external forces to 
which that particle is going to be subject, and we're given no 
information whatever (over and above what can be inferred, by 
means of the statistical postulate, from the wave function) about 
the present position of the particle (and it will turn out that that's 
more or less all of the information about the position of this sort 
of a particle that we can ever be in possession of, but of that more 
later), then Bohm's theory will entail precisely what principles C 
and D of Chapter 2 entail (that is: it will entail precisely what we 
know by experiment to be true) about the probability of finding 
that particle (if we should happen to look for it) at any particular 
point in space at any particular future time. 

And so now we're apparently beginning to get somewhere. 

The technical business of generalizing these laws, so as to be able 
to apply them to more complicated systems, goes (briefly) as fol­
lows: 

(I) Three Space Dimensions. This part is trivial. The wave function 
(of a single isolated structureless particle, still) will now take on 
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values at every point in three-dimensional space (it will have the 
form 'lf(x,y,z)), and the algorithm for calculating the velocity func­
tion will now become three algorithms (each of which looks much 
like the one-dimensional algorithm) for calculating three functions 
(one of which gives the velocity in the x direction, another of which 
gives the velocity in the y direction, and the third of which gives 
the velocity in the z direction), and each of those three functions 
will now be a function of three spatial positions. So the formalism 
will look like this: 

(7.1) Yx{'lf(X,y,z)} = Vx(x,y,z) 

Vz{'lf(x,y,z)} = Vz(x,y,z) 

The evolution here will be just as deterministic as it was in the 
one-dimensional case. And the structure of these algorithms will 
entail that the particle will now get carried along with the flows of 
the quantum-mechanical probability amplitudes in the wave func­
tion in three-dimensional space. And there will be a straightforward 
generalization of the statistical postulate to the three-dimensional 
case, with precisely the same sorts of consequences as were de­
scribed above. 

(II) Spin. This part is pretty simple too. Spin properties, to begin 
with, are taken here to be mathematical properties of the wave 
functions, and the idea is more or less that those properties, those 
parts of the wave function, play no direct role whatever in the 
determination of the velocity functions. The idea is that the velocity 
functions are to be determined here precisely as in (7.1), from the 
coordinate-space wave function of the particle alone. 

That will entail, for example, that the velocity functions for a 
particle whose quantum-mechanical state vector is 

(7.2) Jblack)J'If(x,y,z)) or Jwhite)J'If(x,y,z)) 

or Jwhatever you like)J'If(x,y,z)) 
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will be 

(7.3) V;(x,y,z) = V;{'JI(x,y,z)} (i = x, y, z) 

But it will also lead to something of a perplexity in the treatment 
of states like 

(7.4) ajblack)i'JI(x,y,z)) + bjwhite)jJ(x, y, z)) 

(where] is another wave function), because in (7.4) (since (7.4) is 
nonseparable between its coordinate-space parts and its spin-space 
parts) there isn't any such thing as the coordinate-space wave 
function of the particle. The rule for handling expressions like (7.4) 
is that each of its various different coordinate-space wave functions 
gets to contribute to determining the velocity-functions in propor­
tion to the square of the absolute value of its coefficient; what will 
happen in this particular case, for example, is: 

(7.5) V;(x,y,z) = iai2V;{'JI(x,y,z)} + lbjlV;{j(x,y,z)} (i = x,y,z) 

(III) Multiple-Particle Systems. This part is a little more compli­
cated. 

The first thing to talk about is the generalization of the conven­
tional quantum-mechanical formalism of wave functions to cases 
of multiple-particle systems. That's pretty straightforward. The 
idea is just to write down something analogous to equation (2.27). 

Suppose, then, that l'l't.2) represents an arbitrary quantum state 
of a two-particle system, and suppose that IXt = x, X2 = x') 
represents a state of that same system wherein particle 1 is localized 
at the (three-dimensional) point x, and wherein particle 2 is local­
ized at the (three-dimensional) point x'. Then the two-particle wave 
function associated with the state l'l't.2) is defined to be 

(7.6) 'JI(x,x') = ('l't,21Xt = X, x2 = x') 

considered as a function of x and x'. 
And just as anything whatever that can be said of the quantum 

states of single particles can be translated into the language of 
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single-particle wave functions, anything whatever that can be said 
of the quantum states of two-particle systems can be translated into 
the language of two-particle wave functions. 

Note, by the way, that whereas the single-particle wave functions 
are functions of position in a three-dimensional space, the two­
particle wave functions can be looked at as functions of position 
in a somewhat more abstract six-dimensional space. The first three 
of those six dimensions will refer to the space of possible locations 
of particle 1, and the second three of those six dimensions will refer 
to the space of possible locations of particle 2; and so picking out 
any particular point in that six-dimensional space will amount to 
picking out particular values for the locations of both of those 
particles. 

The laws of Bohm's theory for two-particle systems which stip­
ulate precisely how the two-particle wave functions push such pairs 
of particles around are formulated just as if it were a single particle 
that were being pushed around in a six-dimensional space. There 
will now be six algorithms (each of which looks much like the 
one-dimensional algorithm} for calculating six velocity functions 
(one for the velocity in each of the three spatial dimensions for each 
of the two particles}, and (this is important} each of those six 
functions will be a function of position in the six-dimensional 
space. So the formalism will look like this: 

(7.7) V;(x,y,z,x',y',z') = V;{'Jf(x,y,z,x',y',z')) (i = x,y,z,x',y',z') 

And the way to get the velocities out of the velocity functions is to 
plug in the position of the two-particle system in the six-dimen­
sional space. 

The calculations of the wave functions and the positions of 
two-particle systems at arbitrary times from those wave functions 
and positions at any particular initial time (given the external forces 
to which the particles are subject in the interval between those two 
times} will proceed, as we shall see, very much as they do for 
single-particle systems, and (of course} with just as much certainty 
as they do for single-particle systems. It will now be the position 
of the two-particle system in the six-dimensional space that gets 
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carried along with the flows of the quantum-mechanical probabil­
ities, in that same six-dimensional space, in the wave function. 

And what the statistical postulate will dictate here is that in the 
event that all we initially know of a certain two-particle system is 
its wave function (and that will turn out, once again to be all that 
we can ever know of such systems), then what ought to be supposed 
(for the purpose of making calculations about the future positions 
of the particles) is that the probability that the two-particle system 
was initially located at any particular point in the six-dimensional 
space is equal to the square of the absolute value of the wave 
function of the system, at that initial time, at that same particular 
point in the six-dimensional space (and note that this will reduce 
precisely to the one-particle statistical postulate in the event that 
the wave function of the two particles happens to be separable 
between them). 

And that will guarantee (because of how these systems always 
get carried along with the probability flows) that such calculations, 
under such circumstances, will necessarily entail that the probabil­
ity that the system will be located at any particular point in the 
six-dimensional space at any particular future time will invariably 
be equal to the square of the absolute value of its wave function 
then (at the future time) at that point. It will guarantee (to put it 
slightly differently) that such calculations, under such circum­
stances, will necessarily entail precisely the same things as the 
two-particle versions of principles C and D of Chapter 2 entail 
about the probability of finding the two particles (if we should 
happen to look for them) at any particular pair of points in the 
ordinary three-dimensional space at any particular future time. 

And the reader will now have no trouble in constructing higher­
dimensional formalisms, along precisely the same lines, for treating 
systems consisting of arbitrary numbers of particles, and even (in 
principle) for treating the universe as a whole. 

And the statistical postulate, in a formalism like that, can be 
construed as stipulating something about the initial conditions of 
the universe; it can be construed (in the fairy-tale language, say) ::!§ 

stipulating that what God did when the universe was created was 
_fust to choose a wave function for it and sprinkle all of the particles 
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into space in accordance with the QJJantum-mechanical probabili­
ties.l and then to leave everything alone, forever after, to evolve 
deterministically. And note that just as the one-particle postulate 
can be derived (as we saw above) from the two-particle postulate, 
all of the more specialized statistical postulates will turn out to be 
similarly derivable from this one. 

The Kinds of Stories the Theory Tells 

Let's start slow. 
Let's look (to begin with) at some measurements with spin boxes. 
Consider, for example, an electron, whose wave function is 

black; it is situated in coordinate space as pictured in figure 7.2, 
and it is (as shown in that figure) on its way into a hardness box. 

Given all that, all of the future positions of this electron, on this 
theory, can in principle be determined, with certainty, from its 
present position (and so the aperture through which this electron 
will ultimately exit this box can in principle be determined from its 
present position, and so the outcome of the upcoming measurement 
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of the hardness of this electron can in principle be determined from 
its present position). 

Let's see how that works. Suppose that the configurations of the 
hardness-dependent forces inside the hardness box are such as to 
cause eigenfunctions of the hardness to evolve as depicted in figure 
7.3. Then the evolution of the wave function in question here, the 
black wave function, will of course be a linear superposition (with 
a plus sign and with equal coefficients) of the two evolutions 
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depicted there; so that (under these circumstances, in the time it 
takes for the wave function to pass all the way through the box): 

(7.8) lblack)i'l'a(x)) ~ lfi2(ihard)i'l'b(x)) + isoft)l'l'c(x))) 

where 'l'a(x) is a wave function which is nonzero only in the vicinity 
of the point a and which is headed to the right; 'l'b(x) is a wave 
function which is nonzero only in the vicinity of the point b and 
which is headed up; and 'lfc(x) is a wave function which is nonzero 
only in the vicinity of the point c and which is headed down. 

Now consider how the motion of the electron is going to depend 
on its initial position. And keep in mind that what happens on this 
theory is that the electron, wherever it happens to be, invariably 
gets carried along with the local currents of the quantum-mechan­
ical probability amplitudes. And note that the situation here has 
been cooked up so as to be perfectly symmetrical between the hard 
and the soft branches of the wave function. And so (for as long as 
the hard and the soft branches overlap, which will be up to time t1 
in figure 7.3) whenever the electron is located in the intersection of 
the two branches, then its velocity in the vertical direction will 
patently be zero; and whenever the electron is located in exclusively 
in one or the other of those two branches (whenever, that is, the 
electron is located in a region of space in which the value of one of 
these two wave functions is zero), then it will invariably move 
perfectly along with that particular branch (the one that isn't zero 
there).4 And all of that (if you think about it) will entail that in the 
event that the electron starts out in the upper half of the region 
where 'l'a(x) is nonzero, then it will ultimately emerge from the hard 
aperture of the box; and in the event that the electron starts out in 
the lower half of that initial region, then it will ultimately emerge 
from the soft aperture of the box. It's as simple as that. 

And note that in the event that the electron emerges from the 
hardness box through the hard aperture and is subsequently fed 

4. The statistical postulate will guarantee that there will be no probability 
whatever of the electron's ever being located in a region of space in which the values 
of both of those wave functions will be zero. 
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into another hardness box (as in figure 7.4), then it will with 
certainty emerge from that second box through the hard aperture 
as well; and in the event that the electron emerges from the hardness 
box through the soft aperture and is subsequently fed into another 
hardness box (as in figure 7.5), then it will with certainty emerge 
from that second box through the soft aperture. Here's why: Once 
the electron gets out of the first box, if it emerges, say, through the 
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hard aperture, then (unless the hard and soft branches of the wave 
function are reunited in space later on, by means of reflecting walls, 
perhaps; but we'll talk about that in a minute) it will subsequently 
be moving in regions of space in which the amplitude of the soft 
part of its wave function is zero; and so that soft part will have no 
effect whatever on its subsequent motions; and it will simply be 
carried along through the second hardness box (and through what­
ever else it may encounter thereafter) with the hard part of its wave 
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function. And of course there is an analogous story to tell in the 
event that the electron emerges through the soft aperture of the first 
box. 

And the reader will now be able to confirm for herself that in the 
event that the electron emerges from the hardness box (the first one) 
through, say, the hard aperture and is subsequently fed into a color 
box (as shown in figure 7.6), then, in the event that the electron is 
located in the upper half of the region in which 'l'a(x) is nonzero, 
it will ultimately emerge from the color box through the black 
aperture, and in the event that it is located in the lower half of that 
region, it will ultimately emerge from the color box through the 
white aperture. 

And in the event that the two branches of the wave function 
emerging from the two different apertures of the hardness box are 
ever reunited, by means, say, of an arrangement of reflecting walls 
and a "black box" like the one in figure 7.7, if the electron is then 
fed into a color box, then, no matter what position it initially had 
in the region in which 'l'a(x) was nonzero, it will with certainty 
emerge from that color box through its black aperture. And if a 
wall is inserted somewhere along one of the two paths, then certain 
initial positions of the electron within 'l'a(x) will entail that the 
electron never reaches the color box at all, and certain other such 
positions will entail that the electron finally emerges from the white 
aperture of the color box, and certain other such positions will 
entail that the electron will finally emerge from the black aperture 
of the color box. 

And in the event that all that we initially happen to know of this 
electron is its wave function (which, again, will turn out to be all 
we can know of it, but of that more later), then the statistical 
postulate will straightforwardly reproduce all of the familiar quan­
tum-mechanical frequencies of the various different possible out­
comes of experiments like these (since the outcomes of experiments 
like these invariably come down to facts about the final positions 
of the measured particles). And that's going to turn out to be an 
instance of something a good deal more general: The fact that 
Bohm's theory gets everything right about the positions of things 
is going to entail that it also gets everything right about the out-
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comes of any measurements of any quantum-mechanical observ­
ables whatever, so long as those outcomes get recorded (at one 
point or another) in the positions of things;5 but a good deal more 
will need to be said, later on, about that too. 

Here's something curious: What happens (as we saw before) when 
things are set up as in figure 7.2, and if the wave function of the 
electron is initially black and if the initial position of the electron 
is, say, within the upper half of the region where 'l'a(x) is nonzero, 
is that the electron ultimately emerges from the hard aperture of 
the box. 

Consider how all this depends on the orientation of the hardness 
box. Suppose that everything starts out just as described above (the 
wave function of the electron is black, the position of the electron 
is in the upper half of \lfa(x)), except that the hardness box is flipped 
over, as in figure 7.8. Then the evolution of the wave function, as 
it passes through the box, will proceed as follows: 

(7.9) lblack)l'l'a(x)) ~ Wl(isoft)l'l'b(X)) + lhard)l'l'c(x))) 

5. And note (by the way) that that's a good deal more than can be said for the 
GRW theory (which is to say that it's a good deal more than can be said for any 
existing theory of the collapse). 

The experiments that the GRW theory gets everything right about (after all) are 
just the ones whose outcomes get recorded in the position of something macro­
scopic, but the experiments that Bohm's theory gets everything right about are the 
ones whose outcomes get recorded in the position of anything at all (macroscopic 
or microscopic). 

Bohm's theory, for example, is going to tum out to make the right predictions 
about the outcomes of experiments like the one depicted in figure 5.4, since the 
outcome of that sort of an experiment gets recorded in the position of the measured 
electron (the GRW theory, remember, turned out to entail that experiments like 
that, at least in their pre-retinal stages, don't have any outcomes at all); and Bohm's 
theory is also going to turn out to make the right predictions about the outcomes 
of experiments like the one depicted in figure 5.7, since the outcome of that sort 
of an experiment ultimately gets recorded in the position of the particle in the 
middle of John's head (and remember that these sorts of experiments turned out to 
be problematic for collapse theories in general: it turned out that there can't be any 
theory of the collapse on which this sort of an experiment has an outcome). 

Nonetheless, it remains to be seen (to say the least) whether or not Bohm's theory 
makes the right predictions about the outcomes of absolutely all experiments 
whatsoever; but of that more later. 
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and the path of the particle through space (if you think it through) 
will patently be precisely the same as it would have been if the box 
hadn't been flipped, and so in this case the electron is ultimately 
going to leave the box through the soft aperture. And in the event 
that the electron starts out in the lower half of 'lla(x), with every­
thing else as above (with the box flipped), then the electron will 
ultimately emerge through the hard aperture. 

And so (even though this is a completely deterministic theory) 
the outcome of this sort of a "measurement" of the hardness of an 
electron will in general not be pinned down in this theory even by 
means of a complete specification of the electron's position and its 
wave function, which is (after all) everything there is to be specified 
about that electron. The outcome of such a hardness measurement 
is in general going to depend, on this theory, on precisely how and 
under precisely what circumstances the hardness gets measured, 
even down to the orientation of the hardness box in space. 
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And so it doesn't quite make sense, in general, on this theory, to 
think of hardness as an intrinsic property of electrons or of their 
wave functions (or of any combination of the two) at all. Properties 
like that (properties which, for these sorts of reasons, can't quite 
be thought of as intrinsic to the systems in uestion) have 
be referred to in the literature (for obvious reasons as ntextual 

And it turns out that color and gleb and scrad and m tum 
and energy and every one of the traditional quantum-mechanical 
observables of particles other than position are contextual proper­
ties on this theory too. As a matter of fact, there are theorems in 
the literature to the effect that any deterministic replacement for 
quantum mechanics whatever will invariably have to treat certain 
such observables as contextual ones.6 

Note, however, that in the event that the wave function of an 
electron happens to be an eigenfunction of the hardness, then the 
outcome of a hardness measurement carried out on that electron 
will patently not depend on the orientation of the hardness box, 
and not on any other particulars of the condition of the hardness 
measuring device either, so long as whatever device that is satisfies 
the requirements for being a "good" device for measuring the 
hardness. 

Similarly, if an electron is fed through one hardness box and then 
directly through another, it will with certainty emerge from both 
of those boxes through the same aperture, irrespective of the ori­
entations of those two boxes or of anything else about them (so 
long as they're both hardness boxes), unless the hard and the soft 
branches of the electron's wave function have had a chance to 
overlap in between the two boxes. 

And of course the same sorts of things are true of color as well, 
and analogous things are true of every other quantum-mechanical 
observable too. 

For systems consisting of more than a single particle, Bohm's laws 
become explicitly nonlocal. 

6. See, for example, Gleason, 1957, and Kochen and Specker, 1967. 
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Here's how that happens: Consider a two-particle system. The 
idea is that each of the six velocity functions for a two-particle 
system is going to depend, in general (as I mentioned before), on 
the location of the entire two-particle system in the six-dimensional 
space. And so (for example), in a system consisting of particle 1 
and particle 2, once the wave function is fixed, the velocity in the 
x-direction of particle 1, at some particular moment, is in general 
going to depend not only on the position of particle 1 at that 
moment but also on the position of particle 2, at that same mo­
ment, no matter how far away particle 2 may (at that moment) 
happen to be! And so the motions of particle 2 (which will have 
the effect of changing the location, in the six-dimensional space, of 
the entire two-particle system) will in general play a very direct role, 
instantaneously (no matter how far apart the two particles may 
happen to be, or what may lie between them), in determining the 
velocities of particle 1. And (of course) vice versa. 

Now, it turns out that in the event that the two-particle wave 
function is separable between the two particles, then these sorts of 
nonlocalities won't arise. In the event that the wave function is 
separable between the two particles, then it turns out that (once the 
wave function is given) the velocity of particle 1 always depends 
only on the position of particle 1 and the velocity of particle 2 
depends only on the position of particle 2, and (more generally) the 
two-particle theory reduces completely, in that event (and if the 
particles don't interact with one another by means of ordinary force 
fields), to a pair of one-particle theories, just as in ordinary quan­
tum mechanics. And if that weren't so (come to think of it), the 
one-particle theory wouldn't make any sense at all! 

But things get more interesting if the wave function of the two 
particles is nonseparable. 

Consider, for example, a pair of electrons; and suppose that the 
coordinate-space part of the wave function of one of those electrons 
(electron 1) is initially nonzero only in the vicinity of point a, and 
suppose that the coordinate-space part of the wave function of the 
other electron (electron 2) is initially nonzero only in the vicinity 
of point f (see figure 7.9); and suppose that the spin-space part of 
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the wave function of this system is of the (nonseparable) EPR type, 
so that the wave function as a whole looks like this: 

And suppose that electron 1 happens to start out in the upper 
half of the region in which 'l'a(x) is nonzero and that it is now 
passed through a right-side-up hardness box, as in figure 7.10, so 
that the wave function of the two-particle system becomes: 

Electron 1 (for precisely the same reasons as in the single-particle 
case) will end up in the vicinity of point b. And once that's the case 
(and this is the punch line), the two-electron system will be located 
at a point in the six-dimensional space at which the value of the 
second term in (7.11) is 0. And so, thereafter (unless, or until, the 
two branches of the wave function subsequently come again to 
overlap in the six-dimensional coordinate space), that second 
branch will have no effect whatever on the motions of either of 
these electrons: electron 1 will behave, under all circumstances, as 
if its wave function were purely hard, and electron 2 will behave, 
under all circumstances, as if its wave function were purely soft. 
Electron 2, for example, will now emerge from any hardness box 
it gets fed through by the soft aperture, no matter what the orien­
tation of that box or the initial position of that electron may 
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happen to be. And so, even though the wave function evolves here 
entirely in accordance with the linear dynamical equations of mo­
tion, the passage of electron 1 through the hardness box brings 
about (as it were) an effective collapse of the wave function of the 
entire two-electron system, instantaneously, no matter how far 
apart they may happen to be or what may happen to lie between 
them. 
· And in the event that all we initially know of electrons like this 
one is that their wave function is the one in equation (7.10), then 
(as the reader can now easily confirm for herself) the statistical 
postulate and the Bohm-theoretic equations of motion will straight­
forwardly reproduce all of the standard quantum-mechanical pre­
dictions about the outcomes of measurements with spin boxes on 
EPR systems. And of c entails (by means of Bell's theo­
rem) that some sort nonlocality: was going to have to come up 
in this theory. But note at t e particular sort of nonlocality that 
does come up in this theory turns out (compared. say, to the 
nonlocality in quantum mechanics) to be quite astonishingly con-
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crete; it turns out (that is) to be a genuinely physical sort of action J 
at a distance. 

Suppose, for example, that electron 1 in figure 7.10 starts out (as 
above) in the upper half of the region in which 'l'a(x) is nonzero, 
and suppose that electron 2 starts out in the upper half of the region 
in which 'lfr(x) is nonzero. If that's so, and if electron 1 gets sucked 
through a right-side-up hardness box, as in figure 7.10, then (as 
we've just seen) electron 1 will end up effectively hard, and electron 
2 (whatever its initial position is) will instantaneously become 
effectively soft. But of course in the event that electron 2 gets sucked 
through a hardness box first, and if that hardness box happens to 
be right-side-up (as in figure 7.11), then (since electron 2 is in the 
upper half of 'lfr(x)) electron 2 will end up effectively hard, and 
electron 1 will instantaneously become effectively soft (and so if 
electron 1 subsequently gets sucked through a hardness box, with 
any orientation, then it will with certainty emerge by the soft 
aperture). 

And if everything is initially as I just described, and electron 1 
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gets sucked through an upside-down hardness box, then electron 1 
will end up effectively soft and electron 2 will instantaneously 
become effectively hard. 

And so, if we're given the (nonseparable) wave function of such 
a system, and if we're given the positions of both of its constituent 
particles, then all this will patently afford a means of transmitting 
discernible information, instantaneously, over any distance, no 
matter what may lie in the way. 

And so there can't possibly be any such thing as a Lorentz-co­
variant relativistic extension of this sort of a theory. This sort of 
theory will invariably require a preferred frame; this sort of theory 
(to put it another way) will invariably require an absolute standard 
of simultaneity. 

But of course in the event that all we know of such a system is 
its wave function, then (as I mentioned above) all of the familiar 
quantum-mechanical probabilities for the outcomes of experiments 
with spin boxes on that sort of system will reemerge, and the sort 
of nonlocal information transmission just described will become 
impossible, and it will become impossible to determine (by means 
of experiments on a system like that, in any noncovariant relativ­
istic extension of Bohm's theory) which Lorentz-frame is the pre­
ferred one. 7 

The statistical predictions of any relativistic extension of Bohm's 
theory, then (supposing that the universe initially got started in the 
fairy-tale way), will turn out to be fully Lorentz-covariant, even 
though the underlying theory won't be;8 and so taking Bohm's 

7. The idea (once again) is that the outcomes of these sorts of measurements are 
recorded in the final positions of the two particles; and we know that in the event 
that all the information we initially have about such a pair of particles is their wave 
function, then the Bohm-theoretic probability distributions for those positions are 
going to be precisely the same as the quantum-mechanical probability distributions 
for those positions. 

8. Of course, none of this talk will matter much unless it turns out that some 
relativistic extension of Bohm's theory (that is: some Bohm-type replacement for 
relativistic quantum field theory) can actually be cooked up. 

It isn't clear whether or not that can be done. It turns out to be hard (for example) 
to figure out what sorts of field variables can possibly stand in for the positions of 
particles in a theory like that; it turns out to be hard (that is) to figure out what 
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theory seriously will entail being instrumentalist about special rel­
ativity.9 

Consider what happens on this theory in the event that the outcome 
of a measurement ultimately gets recorded in something macro­
scopic. 

Consider, for example, the case of a hardness measuring device 
equipped with a macroscopic pointer, like the device depicted in 
figure 7.12. We've dealt with that sort of thing before. 

sorts of field variables ought to get picked out by a theory like that as the non­
contextual ones. 

Bohm and Bell have both thought a good deal about these matters, but what 
they've come up with so far is only somewhat encouraging. Bohm (1952) has 
techniques for cooking up thoroughly Bohm-type replacements for a few particular 
field theories (but there are other such theories that those techniques won't work 
for); and Bell (1984) has a method which is a good deal more generally applicable 
but which generates theories that aren't completely deterministic. 

Here's what the fundamental trouble is: Bohm's theory (as it presently stands) is 
quite deeply bound up with a very particular sort of ontology; the trouble (that is) 
is that this theory isn't a replacement for quantum theory in general (like the 
many-minds interpretation is), but only for those quantum theories which happen 
to be theories of persistent particles; and so the business of cooking up Bohm-type 
replacements for quantum theories of other sorts of systems (field systems or string 
systems or what have you) always has to proceed, without any guarantee of 
eventual success, case by case, from the ground up. 

9. Bell (1976) began to explore what it's like to do that in a nice article called 
"How to Teach Special Relativity." 
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Suppose that a black electron is fed into that device, when the 
device is in its ready state. The wave function will evolve like this: 

(7.12) J'Jf,)m(J'l'a)eJblack).) ~ 

V~(J'Jfh)m(J'Jfb)eJhard).) + l'l's)m(J'Jfb)eJsoft).)) 

where l'l'r)m is a state of the billions of particles in the pointer in 
which all of those particles are sitting more or less directly under­
neath the word "ready" on the dial (and similarly for l'l'h)m and 
l'l's)m), and l'l'a)e and l'l'b)e are the coordinate-space states of the 
electron depicted in figure 7.12.10 

Once the electron passes all the way through the box and the 
wave function is the one on the right-hand side of equation (7.12), 
and the particles in the pointer are either under the "hard" on the 
dial or under the "soft" on the dial, 11 then the wave function of 
this composite system will have been effectively collapsed onto one 
or the other of the two terms on the right-hand side of equation 
(7.12), and (unless or until the two branches of the coordinate­
space wave function of the particles in the pointer somehow drift 
back together) the electron will subsequently have an effectively 
determinate hardness. 

And suppose that the two branches of the coordinate-space wave 
function of the particles in the pointer do eventually drift back 
together but that there happens to be an air molecule in the vicinity 
of the dial (as in figure 5.1), and that the position of that air 
molecule ends up correlated to the hardness of the electron (as in 
equation (5.4)). Then (unless or until the two branches of the 
coordinate-space wave function of the air molecule somehow drift 

10. Note, to begin with, that the outcome of this sort of a hardness measurement 
is going to depend on the precise initial positions of the particles in the pointer; it's 
the pointer (and not the measured particle itself, as in figure 7.3) whose coordi­
nate-space wave function gets split here; it's the pointer (and not the measured 
particle) whose position gets correlated to the hardness. 

11. And note that either all of those particles will be under the "soft" or all of 
them will be under the "hard"; the form of the wave function (together with the 
statistical postulate) will entail that the probability that some of those particles end 
up in one of those places and some of them end up in the other will be zero. 
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back together) the electron will still have an effectively determinate 
hardness. 

And even if the various branches of the air molecule's wave 
function were to drift back together too, but records of the outcome 
of the hardness measurements were still to survive, say, in the 
positions of ink molecules on the pages of a lab notebook, or in 
the positions of a few ions in a few neurons in some experimenter's 
brain, or even in so much as the position a single subatomic particle 
anywhere in the universe at all (as in the EPR example), then (unless 
or until we can manage to arrange that all that altogether ceases to 
be true) the electron will still have an effectively determinate hard­
ness. 

And so the business undoing the effective determinateness of the 
hardness of this electron, or of empirically confirming that as a 
matter of fact that determinateness is merely effective, and that 
nothing has actually collapsed, will be (to say the least) quite 
fantastically difficult.12 

And so Bohm's theory is going to make things look (for all 
practical purposes) as if wave functions do collapse when we do 
measurements with instruments with macroscopic pointers; and as 
a matter of fact, Bohm's theory is going to make things look as if 
wave functions collapse whenever we do measurements with any 
instruments whatever which (by one means or another) leave rec­
ords of the outcomes of those measurements in the positions of 
particles in their environments;13 and those collapses are going to 
appear to occur in more or less precisely the way we're used to, the 

12. The difficulty here is of course precisely the same as the one we encountered 
on pages 82-92. The trouble is that the environment of a pointer like the one we're 
talking about here will act as a gigantic collection of extremely effective measuring 
devices for the pointer's position; and the business of confirming that as a matter 
of fact the Bohm wave function hasn't collapsed will involve either avoiding or 
reversing or somehow taking account of every last one of those measurements. 

13. Note that these recordings need not be in the positions of anything macro­
scopic; what's important is merely that those recordings be in the positions of 
something and that they be (practically speaking) difficult to undo, or difficult to 
take account of. Consider, for example, the case of the measurement depicted in 
figure 5.4. 
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way we tried to force them to do in Chapter 5, even though it can 
in principle be empirically confirmed (on this theory) that in fact 
they don't occur at all. 

And in the event that all we know of the systems involved are 
their wave functions at the moment just before the measurement 
interaction takes place, or in the event that all we know of those 
systems are their effective wave functions at the moment just before 
the measurement interaction takes place, then the statistical postu­
late will straightforwardly entail that the epistemic probabilities of 
the various possible effective collapses which that interaction may 
bring about will all be precisely the same as the ontic probabilities 
of the corresponding actual collapses (that is: the probabilities of 
principleD of Chapter 2) in quantum mechanics. 

And it will turn out (as I've already mentioned) that this theory 
entails that all that we ever can know of the present states of such 
systems are their wave functions (or perhaps their effective wave 
functions); _2nd that's how it happens (and I've already mentioned 
this too) that this theory has more or less the same empirical 
content as quantum mechanics does; that's how it happens (more 
particularly) that this theory entails that (even though the funda­
mental laws of the world are absolutely deterministic) we can never 
put ourselves in a position to predict any more about the outcomes 
of future experiments than the conventional quantum-mechanical 
wuncertainty relations allow us to. 

Let's see (finally) how that works. 
Let's think through a simple example. Consider (say) an electron 

whose wave function happens to be I'Jia(x))lblack) and which is on 
its way into a hardness box, like the one in figure 7.2. Suppose that 
we initially know nothing of this electron other than its wave 
function; so that all that we're initially in a position to predict, with 
certainty, about the outcomes of spin measurements on this elec­
tron, is that (just as in quantum mechanics) any upcoming mea­
surement of the electron's color will necessarily find it to be black. 

Consider how things would stand if we were now somehow able 
to find out the position of this electron, or if we were merely able 
to find out, say, whether this electron is in the upper or in the lower 
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half of the region where 'l'a(x) is nonzero, without (in the course of 
finding that out) changing the electron's wave function. Then, of 
course, we would still be in a position to predict the outcome of 
any future measurement of the electron's color (since the wave 
function of the electron would still be the same), but we would also 
now be in a position to predict, with certainty, the aperture through 
which the electron would ultimately emerge from, say, a right-side­
up hardness box; and so we would be in a position to violate the 
quantum-mechanical uncertainty relations; we would be in a posi­
tion to predict more about this electron than quantum mechanics 
allows us to; we would be in a position to predict more about it 
than (as a matter of empirical fact) we find we can predict about 
it. 

Let's figure out what's going on. Think, to begin with, about 
what it will involve (think, that is, about what sorts of physical acts 
it will involve) to find out whether the electron in the above sce­
nario is located in the upper half or the lower half of the region in 
which 'l'a(x) is nonzero. What we shall need to do is to bring some 
physical property of a measuring device (the position of its pointer, 
say) into the appropriate sort of correlation with the location of 
the electron. And what will need to be done in order to accomplish 
that (as a little reflection on the laws of this theory will show) is to 
bring about the analogous sorts of correlations in the wave func­
tions of those two systems; what will need to be done (to put it 
another way) is to bring into being a wave function of the compos­
ite system which is zero in all those regions of the many-dimen­
sional coordinate-space in which those correlations fail to obtain. 

And so finding out whether the electron in the above scenario is 
located in the upper or the lower half of the region in which 'l'a(x) 
is nonzero, without (in the process of finding that out) changing 
the wave function, is going to be (as a matter of fundamental 
principle) completely out of the question. 

Suppose, for example, that we were to measure whether the 
electron is in fact in the upper or the lower half of the region in 
which 'l'a(x) is nonzero (let's call that "region a" from here on), 
using a measuring device (m) like the one depicted in figure 7.13. 
Then (in accordance with the dynamical equations of motion) the 
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wave functions of the electron and the measuring device will evolve 
as follows: 

(7.13) Jr)ml'l'a(x)).Jblack). ~ 

J+ )mJ'I':(x)).Jblack). + J-)mJ'I';(x)).Jblack). 

where 'l':(x) is equal to 'l'a(x) in the upper half of region a and is 0 
elsewhere, and 'I'; (x) is equal to 'I' a( X) in the lower half of region a 
and is 0 elsewhere, and of course Jr) and I+) and 1-) are the states 
of the pointer in which it's pointing at "r" or "+" or "-" on the 
dial, respectively. 

And so in the event that the electron is located in the upper half 
of region a, then the pointer will with certainty end up pointing at 
"+" and the coordinate-space wave function of the electron will 
be effectively collapsed onto 'l':(x), and the statistical postulate will 
entail (by means of a straightforward conditionalization) that the 
probability that the electron is located at any particular point in 
space is equal to l'l':(x)J2; and in the event that the electron is 
located in the lower half of region a, then the pointer will with 
certainty end up pointing at "-" and the coordinate-space wave 
function of the electron will be effectively collapsed onto 'l';(x), and 
the statistical postulate will entail that the probability that the 
electron is located at any particular point in space will be equal to 
l'l';(x)J2. 

And all of that will ineluctably change the way in which i:he 
future motions of this electron depend on its present position. In 
the event, for example, that the electron's coordinate-space wave 
function gets effectively collapsed onto 'l':(x), then (as the reader 
can easily confirm) the outcome of an upcoming measurement with 
a hardness box will depend on whether the electron is located in 
the top quarter (not half!) or the next-to-the-top quarter of the 
region a. Of course the outcome of our position measurement will 
give us no idea whatever which of those two is the case (that is: the 
epistemic probabilities will be precisely fifty-fifty); and so every­
thing perversely conspires together here so as to insure that that 
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position measurement will have done us precisely no good at all, 
in so far as the violation of the uncertainty relations is concerned. 
And of course the same sort of thing happens in the event that the 
electron's wave function gets effectively collapsed onto '1'.:;-(x). 

And as a matter of fact, this sort of thing turns out to constitute 
an absolutely general law: it turns out (and the reader will now be 
in a position to construct an argument for this for herself) that this 
theory entails that if we initially know nothing of a system (any 
system) other than its wave function (if, that is, we know nothing 
more of the system's location in its many-dimensional coordinate 
space than can be inferred from its wave function by means of the 
statistical postulate), then all we shall possibly be in a position to 
know at any particular future time of that system's location in that 
space (by means of measurements, for example, or by any physical 
means whatever) will be what follows (by means of the statistical 
postulate) from that system's effective wave function at that future 
time. 

And if we apply all that to the universe as a whole, and if we 
presume that the universe was initially created in accordance with 
the fairy tale described earlier, then this theory will entail that all 
that can ever be found out by any observer whatever about the 
present Bohm-state of any particular physical system can always be 
completely summed up (with the help of the statistical postulate) 
in a wave function (sometimes this will turn out to be the actual 
wave function of the system in question, but more often it will 
merely be an effective one). And so the Bohm theory (even though 
it's a completely deterministic theory) will systematically and in­
variably and unavoidably prohibit us from ever predicting the 
outcomes of future measurements of the positions of particles any 
more accurately than those wave functions allow us to do; it will 
(that is) prohibit us from ever predicting those outcomes any more 
accurately than the uncertainty relations allow us to do. 

That's how this theory manages to clean up after itself: that's 
what entails (for example) that we can't ever empirically discover 
that the outcomes of measurements with spin boxes depend on the 
orientations of those boxes (even though they do depend on those 
orientations, if this theory is right); and that's what entails that we 
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can't ever empirically discover that the outcomes of measurements 
with spin boxes can also depend, nonlocally (when states like (7.10) 
obtain), on the orientations of fantastically distant spin boxes (even 
though they can depend on the orientations of distant boxes, if this 
theory is right); and that's what entails that we can't ever find out 
what the natural standard of absolute simultaneity is (even though 
there is a natural standard of absolute simultaneity, if this theory 
is right); and so on. 

And so if this theory is right (and this is one of the things about 
it that's cheap and unbeautiful, and that I like), then the fundamen­
tal laws of the world are cooked up in such a way as to systemat­
ically mislead us about themselves. 

Here's what's so cool about this theory: 
This is the kind of theory whereby you can tell an absolutely 

low-brow story about the world, 'the kind of story (that is) that's 
about the motions of material bodies, the kind of story that con­
tains nothing cryptic and nothing metaphysically novel and nothing 
ambiguous and nothing inexplicit and nothing evasive and nothing 
unintelligible and nothing inexact and nothing subtle and in which 
no questions ever fail to make sense and in which no questions ever 
fail to have answers and in which no two physical properties of 
anything are ever "incompatible" with one another and in which 
the whole universe always evolves deterministically and which re­
counts the unfolding of a perverse and gigantic conspiracy to make 
the world appear to be quantum-mechanical. 

And that conspiracy works (in brief) like this: Bohm's theory 
entails everything that quantum mechanics entails (~s: every­
thing that principles C and D of Chapter 2 entail, everything that 
we empirically know to be true) about the outcomes of measure­
ments of the positions of particles in isolated microscopic physical 
systems; and moreover it entails that whenever we carry out a 
~ement of any quantum-mechanical observable whatever, 
then (unless or until there somehow ceases to be any record of the 
Oiittome of that measurement in the position of even so much as a 
single subatomic particle anywhere in the universe; and that can 
presumably almost never come to pass, if the outcome of the 
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measurement ever gets recorded in anything macroscopic) the mea­
sured system (or rather: the positions of all of the particles which 
make up that system) will subsequently evolve just as if that 
sy-stem's wave function has been collapsed, by the measurement, 
;nto an eigenfunction (the one corresponding to the measured 
eigenvalue) of the measured observable, ~ven though as a matter of 
fact it hasn't been; and it also entails that the probabilities of those 
"collapses" will be precisely the familiar quantum-mechanical 
ones. 

Mentality 

But there are interesting questions (which I want to just set up here, 
and then leave to the reader) about whether or not all that turns 
out to be enough. 

Consider (for example) whether Bohm's theory guarantees that 
every sort of measurement whatsoever even has an outcome. 
Bohm's theory does a good deal better at that than any theory of 
the collapse of the wave function can (that's what we found out in 
note 5); but there are problem cases for Bohm's theory too. 

Here's a science-fiction story (along the lines of the story about 
John, in Chapter 5) about one of those. 

This story is going to involve a device (like the one depicted in 
figure 7.14) for producing a correlation between the hardness of a 
certain microscopic particle P and the hardness of an incoming 
electron (which is slightly different from what happens in the story 
in Chapter 5); a sort of measuring device for the hardness of 
electrons in which the "pointer" is the hardness of P. Here's how 
the device works: if the device starts out in its ready state, and if 
(say) a hard electron is fed through the device, then the hardness 
of that electron is unaffected by its passage through the device, and 
the device is unaffected too, except that P ends up, once the electron 
has passed all the way through, soft; and things work similarly (or 
rather, analogously) if a soft electron is fed through the device, if 
the device is initially in its ready state (in that case P ends up hard). 
Once the hardness of the electron gets correlated to the hardness 
of P, then P's hardness can be measured, if we want to, by means 
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of either one of the two little hardness boxes (note that one of them 
is right-side-up and the other is up-side-down, but of that more 
later) on the right-hand side of the device. 

A device like the one I just described is (according to the story) 
sitting in the middle of John-2's brain, and the particular way in 
which that device is now hooked up to the rest of John-2's nervous 
system makes him function as if his occurrent beliefs about the 
hardness of electrons that happen to pass through it are determined 
directly by the hardness of P (just as the occurrent beliefs of the 
original John about the hardness of those sorts of electrons were 
determined directly by the position of his P). 

Here's what that means: Suppose that John-2 is presented with 
an electron which happens to be hard and is requested to ascertain 
what the value of the hardness of that electron is. What John-2 
does (just as the original John did) is to take the electron into his 
head through his right door, pass it through his surgically implanted 
device (with the device initially in its ready state), and then expel 
it from his head through his left door. And when that's all done 
(that is, when P is soft but the value of the hardness of the electron 
is not yet recorded anywhere in John-2's brain other than in the 
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hardness of P), John-2 announces that he is, at present, consciously 
aware of what the value of the hardness of the electron is, and that 
he would be delighted to tell us what that value is, if we would like 
to know.14 

Now, the way that John-2 behaves, subsequent to all that, in the 
event that we do ask him to tell us what that value is, is (according 
to this story) as follows: 

The rules of the game (to begin with, to keep things simple) are 
that John-2 can tell us about that either verbally or in writing (or 
in both ways, but of that more in a minute).15 

And what the story stipulates is that in the event that we ask 
John-2 to tell us verbally what the value of the hardness of the 
electron is, then what he does (what he's programmed to do, what 
he's wired up to do) is to pass P through the upper hardness box 
(the one that's right-side-up), which is equipped with P detectors 
at its two exit apertures, which are in turn connected with certain 
of John-2's neurons, which are themselves ultimately connected 
with his mouth muscles and his throat muscles and his tongue 
muscles in such a way as to end up generating (in the case where 
John-2 is initially presented with a hard electron) the utterance 
"hard" (and of course in the event that John-2 is initially presented 
with a soft electron, then these same procedures and these same 
connections will end up producing the utterance "soft"). 

And (on the other hand) the story stipulates that in the event that 
what we ask John-2 to do is to report in writing what the value of 
the hardness of the electron is, then what he does (what, once again, 
he's wired up to do) is to pass P through the lower hardness box 
(the one that's upside-down) which is similarly (or rather, analo­
gously) equipped with P detectors and hooked up to the rest of 

14. There was a good deal of talk in Chapter 5 (which the reader would do well 
to bear in mind here too) about precisely how we ought to take announcements 
like that. 

15. Of course, there are almost certainly going to be any number of other ways 
(besides speaking or writing) in which anybody like John-2 could manage to 
communicate information like that, but those other ways need not concern us right 
now; all that will turn out to be important for our present purposes is that there 
can be at least two ways for him to communicate it. 
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John-2's brain in such a way as to end up generating (in the case 
where John-2 is initially presented with a hard electron) the inscrip­
tion "hard" (and of course, as above, in the event that John-2 is 
initially presented with a soft electron, then these same procedures 
and these same connections will end up producing the inscription 
"soft"). 

Good; now (and here comes the interesting part of the story) 
consider how John-2 is going to behave in the event that he is 
presented with (say) a white electron and requested to measure the 
hardness of that electron, and to remember the outcome of that 
measurement. When John-2 is done with all that (that is: when the 
electron has passed all the way through John-2's head, as depicted 
in figure 7.15; and when John-2 informs us that he now knows 
what the value of the hardness of that electron is, that he is now 
consciously aware of what the value of the hardness of that electron 
is, and that he can tell us that value, if we like, either verbally or 

--+ 

John-2 
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in writing), then (as the reader can easily confirm, since we've 
already had a good deal of practice with this sort of thing) the state 
of the composite system that consists of P and the measured elec­
tron is going to be: 

where 'l'a(x) is a wave function which is nonzero only in the region 
a in figure 7.15, and 'lfr(x) is a wave function which is nonzero only 
in the region fin figure 7.15. And of course the state in (7.14) is 
precisely the same state as the one in (7.10), which we discussed in 
considerable detail above. 

And so (and all of what follows now can just be read off from 
what we ut before about (7.10)) if we were to ask John-2 
to tell u , verball (when (7.14) obtains), what the hardness of the 
measure e ectron is, then he would utter either "hard" or "soft,"16 

and of course the procedures that go on inside of John-2's head 
which lead up to one or the other of those two utterances will 
produce an effective collapse of the wave function in (7.11} onto 
(respectively) either its first or its second term, and so whichever of 
those two utterances John-2 ends up making will necessarily be 
confirmed to be correct by any subsequent measurement of the 
hardness of the electron itselt 

And if, instead, we were to ask John-2 to tell hen 
(7.14) obtains) what the hardness of the measure ctron is, then 
he would write down either "hard" or "soft."17 The procedures 
that go on in John-2's head which lead up to one or the other of 
those inscriptions will produce the same sort of effective collapse 
as above, and so whichever of those two inscriptions John-2 end~ 

16. Note, by the way, that there is invariably going to be an objective and 
unambiguous matter of fact about which of those two utterances John-2 makes, 
since the act of uttering "soft" can be distinguished from the act of uttering "hard" 
in terms of the positions of all sorts of things (certain parts of John-2's tongue, for 
example, or his lips, or his throat). 

17. And here again, for the same sorts of reasons, there will invariably be an 
objective matter of fact about which one of those he does write down. 
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~£..making will also necessarily be confirmed to be correct by any 
subsequent measurement of the hardness of the electron itself. 

And moreover, if we were to ask John-2 for a verbal report on 
the hardness of the measured electron, when (7.14) obtains, and if, 
once that report is produced, we were to ask him for a written 
report on the hardness of that same electron, then the content of J.-
that written report will invariably coincide with the content of the 
earlier verbal report; and the content of any second verbal report 
on the hardness of that electron will also invariably coincide with Je 
the content of that first one; and the content of any later written 
report on that hardness will also invariably coincide with the con-
tent of any earlier one, and so on. 

And so whatever plausible observable or functional criteria there 
may be for having a belief, or for having a true belief, or for having 
a justified true belief about the hardness of that measured electron, 
all of those criteria will plainly be satisfiable by anybody wired up 
as John-2 is, when a state like the one in (7.14) obtains. 

And yet (and this is the punch line) if Bobm's theory is right, then 
John-2 can't possibly be a genuine "knower" of the hardness of the 
measured electron, when (7.14) obtains. · 

Here's why: Suppose (for example) that P happens to be in the 
upper half of region a, when (7.14) obtains, and suppose that 
John-2 is first requested to produce a verbal report about the 
hardness of the electron. Then the content of that report, and of 
any subsequent report, otmei kind, about that hardness is going 
to be that the electron i . soft. ut in the event that John-2 is in 
precisely the condition d · ed above and he is first requested to 
produce a written report about the hardness of the electron, then 
the content of that report, and of any subsequent report, o~f· 
kind, about that hardness is going to be that the electron i hard. 
And of course all of that will get reversed in the event t 
happens to be in the lower half of region a, when (7.14) obtains. 

And so, when (7.14) obtains (that is: before any report has been 
requested of John-2, but when John-2 claims to be a knower of the I 
hardness of the electron, and when John-2 is in fact in a position 
to produce a report about that hardness, of either sort, which will 
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with certainty be confirmed by any subsequent measurement of that 
hardness), John-2's dispositions are completely unlike those of any 
genuine rational knower of that hardness; since the content of 
whatever reports John-2 produces about that hardness will depend 
(as a matter of fact, but not in any observable way) on what sort 
of report is requested first. 

The Incommensurability of Bohm's Theory 
and Many-Minds Theories 

The business of comparing the empirical contents of Bohm's theory 
to the empirical contents of a many-minds theory turns out to be 
very peculiar. 

To begin with, if either one of those two theories happens to be 
the true theory of the world, then the question of which one of 
them is the true one will be undeterminable by any imaginable sort 
of empirical evidence. It's pretty clear how that works: Each one of 
those two theories entails (as I've already mentioned) that the linear 
dynamical equations of motion are always exactly right, and each 
one of them entails that the probabilities of the outcomes of all of 
the sorts of experiments that have any outcomes (we'll talk more 
about that soon) are precisely the ones laid down in principle D of 
Chapter 2, and so (as a matter of fundamental principle) there can't 
be any purely experimental means of deciding between them. 18 

18. Any theory of the collapse of the wave function, by the way, is clearly going 
to differ from Bohm's theory and from a many-minds theory (and presumably from 
any theory in whicll there isn't any such thing as a collapse of the wave-function), 
in terms of its predictions about the outcomes of certain experiments. 

Here's how that will work. Any theory of the collapse of the wave function (just 
in virtue of what it is to be a theory of the collapse of the wave function) is going 
to entail that there are certain superpositions of macroscopically different states of 
the world whicll, whenever they arise, collapse (more or less immediately) onto one 
or another of those states. Take any such theory (let's call it n. Design a hardness 
measuring device for which the "indicates-that-hard" state and the "indicates-that­
soft" state are (as it were) macroscopically different insofar as Tis concerned (that 
is: design the device in such a way as to guarantee that T entails that a state like 
the one in equation (5.2) will more or less immediately collapse onto the state in 
equation (5.1)). Prepare the device (either genuinely or effectively) in its ready state. 
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So, suppose it were to turn out that what our empirical experi­
ence entails is that the dynamical equations of motion are always 
exactly right (which is how I figure it probably will turn out, once 
the results are in); and suppose it were also to turn out that there 
aren't any purely theoretical reasons why one or the other of these 
two theories is somehow manifestly out of the running (which is 
maybe a little less certain). What that would mean is that questions 
about the structure of space and time, and questions about whether 
or not the world is deterministic (which were supposed to be the 
two central questions of the physics of this century, and which both 
happen to be questions on which these two theories radically dis­
agree with one another), are the kinds of questions which there 
can't ever be scientific ans~ers to. Period. 

But there's something else that's weird too. 
Consider the question (the one that I postponed a few paragraphs 

back) of which experiments do have any outcomes. Bohm's theory 
and many-minds theories disagree about that. 

Consider, for example, a measurement of the hardness of a black 
electron that gets carried out by an automatic device with a pointer, 
like the one in figure 5.1. On Bohm's theory, there will be a deter­
minate matter of fact about where that pointer ends up, and where 
that pointer ends up will be the sort of thing that counts as a piece 
of absolutely raw empirical data, the sort of thing (that is) that 
physics is fundamentally in the business of making predictions 
about. And of course on a many-minds theory, there won't be any 
determinate matter of fact about where that pointer ends up, and 
(consequently) where that pointer ends up can't possibly be the sort 
of thing that counts as a piece of absolutely raw empirical data, 
and (consequently) where that pointer ends up can't possibly be the 

Feed a black electron into it. Let the interaction between the device and the electron 
run its course. Then measure the observable of the composite system consisting of 
the device and the electron that we talked about on pages 87-92, the one we called 
zip - color there, the one that's extremely hard (but not impossible) to measure. 
If T is true, then there will be nonzero probabilities of a number of different 
outcomes of the zip - color measurement; but if Bohm's theory is true, or if a 
many-minds theory is true, then the outcome of that measurement will invariably 
and with certainty be zero. And that's that. 
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sort of thing that physics is in the business of making any predic­
tions about. And of course the conviction of any adherent of 
Bohm's theory to the effect that there is some matter of fact about 
where that pointer ends up will be perfectly explicable in the 
context of a many-minds theory as a simple aelusion. ~nd (conse­
quently) there_£~n't b~ agy means of resolving that dispute. 

And consider a measurement of the hardness of a black electron 
that gets carried out by a sentient observer whose brain is wired up 
as John-2's brain is. On a many-minds theory, there will be a 
determinate matter of fact about what each one of John-2's minds 
ends up thinking about the hardness of that electron, and those 
thoughts will be the sorts of things that count as pieces of abso­
lutely raw empirical data and as the sorts of things that physics is 
fundamentally in the business of making predictions about. And of 
course on Bohm's theory, there won't be any matter of fact about 
what John-2 ends up thinking about the hardness of that electron, 
and (consequently) what he ends up thinking about that can't 
possibly be the sort of thing that counts as a piece of absolutely 
raw empirical data, or as the sort of thing that physics is funda­
mentally in the business of making predictions about. And of 
course the conviction of any adherent of a many-minds theory to 
the effect that there is some matter of fact about what any one of 
John-2's minds ends up thinking about that will likewise be per­
fectly explicable (because of the stuff we talked about in the first 
section of Chapter 6), in the context of Bohm's theory, as a delu­
sion. And (consequently) there can't be any means of resolving that 
dispute either. I! And so the upshot of all this is that it doesn't capture what's 
going on to say of these two theories that (in virtue of the im­
possibility of experimentally telling them apart) they're empirically 
equivalent to one another. What these two theories are is (in an 
extraordinarily radical way) empirically incommensurable with one 

~ about is what observers think; and it entails that there will fre-
\ 

another: What a many-minds theory takes physics to be ultimately 

quently not even be matters of fact about where things go .. ~ 
what Bohm's theory takes physics to be ultimately abo!!!. (~ 
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mentioned before) is where things go; and it entails that there will 
sometimes not even be matters of fact about what observers think. 

Of course, there may happen to be sentient observers in the 
world whose thoughts supervene entirely on the positions of things. 
Human observers (the ones whose brains are wired up in the 
natural way, that is) are probably (most of the time) like that. And 
of course Bohm's theory and many-minds theories will agree that 
there are determinate matters of fact about the outcomes of any 
measurements that get carried out by observers like that; and 
(moreover) they will agree (as I mentioned above) that the proba­
bilities of those outcomes will be precisely the ones laid down in 
principleD of Chapter 2. But that kind of thing (if it happens) will 
amount to a rather special case. 



. . . 8 ... 

Self-Measurement 

If there isn't any such thing as a collapse of the wave function 
(which is what smells right to me, and which the reader ought to 
be persuaded, by now, is at least worth considering), then there are 
stories about what's physically possible that have interesting sur­
prises in them. 

And I want (by way of finishing this book up) to tell one. 

Let me tell it first in the bare-theory language. 
Suppose that a competent observer named h carries out a mea­

surement of the color of an electron that's initially hard. When 
that's done (as we've seen a number of times already) the physical 
state of h and of her measuring apparatus and of the electron is 
going to be 

(8.1) 1/.Jl(ibelieves e black)hl"black")mlblack). 

+ !believes e white)hl"white")miwhite).) 

Let's call the state in (8.1) IA)h+m+eo And bear in mind that 
IA)h + m +.is necessarily going to be an eigenstate of some complete 
set of physical observables, since every quantum state necessarily 
is. Let's call those observables (in the particular case of IA)h + m + .) 
{Q}, and let's call the associated eigenvalues {q}. 

Now, suppose that there happens to be a second observer around 
(call him h2); and suppose that at the conclusion of h's measure­
ment of the color of e (when the state of hand m and e is lA)), h2 
measures {Q}. He carries out that measurement (in the usual way) 
by means of a {Q} measuring device (which is a device which can 

180 
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necessarily be constructed, if quantum mechanics is right) 1 which 
interacts with hand m and e and which records the values of {Q} 
in (say) the positions of some set of pointers, and which h2 subse­
quently looks at in order to ascertain what the values of {Q} are. 

When that's all done (since the result of this measurement is 
with certainty going to be {Q} = {q}), things are going to look like 
this: 

(8.2) jbelieves {Q} = {q})h2Jindicates {Q} = {q})mQJA)b + m + e 

What's going on in this state is that h2 is (as it were) in possession 
of something like a photograph (in his {Q} measuring device) of the 
full superposition of h's brain states which constitutes JA)h + m + •• 

Of course, there isn't anything particularly surprising in that. In 
so far as h2 is concerned, after all, h, whatever else she is, is a 
physical system out there in the external world; and so h ought in 
principle to be no less susceptible of being in superpositions of these 
sorts of brain states, and no less susceptible of being measured to 
be in superpositions of these sorts of brain states, than (say) an 
electron is susceptible of being in, and of being measured to be in, 
superpositions of hardness states. But we're not at the end of the 
story yet. 

Suppose that now (when the state in (8.2) obtains) h2 tells h how 
the {Q} measurement came out. (Note, by the way, that h2's func­
tion in this story is merely to be an indicator; to h, of the outcome 
of the {Q} measurement; and so the story we're in the middle of 
here can just as well be thought of as the story of a measurement 
of the {Q} which h carries out, with the help of the appropriate 
instruments, on herself). Well, the way things are going to end up 
when that's done (given the linearity of the equations of motion) is 
like this: 

1. Of course, the construction of a device like that is in general going to be 
extraordinarily difficult, for the reasons described on pages 88-92. But that need 
not concern us right now. We're just telling a science-fiction story here; all that's 
important is that it be physically possible. 
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(8.3) !believes {Q} = {q})h2lindicates {Q} = {q})mQ 

X V--.12{ibelieves e black and {Q} = {q})hl"black")mlblack). 

+ !believes e white and {Q} = {q})hl"white")mlwhite).} 

And this is going to turn out to be a really curious stat~ of affairs. 2 

* * * 

2. Let's say a bit more about the structure of h's brain. 
Suppose that h stores her belief about the hardness of the electron in a certain 

set of memory elements called a; and that she stores her beliefs about the values of 
the (Q} in a certain set of memory elements called b. And let's refer to all of the 
rest of hash*. And let's assume (just to keep things simple) that the state of h* 
throughout the story we've been telling here is some particular state called l&)h·· 

Then we can write: 

!believes e black and (Q) = (q))h = l&)h•l"black")ai"IQ) = (q)")b 

and 

!believes e white and (Q} = (q))h = l&)h•l"white")ai"IQ} = (q)")b 

And if you write out the whole state in (8.3) in terms of states of a and b and 
h *, it looks like this: 

!believes (Q} = (q))h2lindicates (Q) = (q))mQ 
X 1/v'Z(I&)h•l"black")ai"IQ} = (q)")bl"black")mlblack)e 
+ l&)h•l"white")ai"(Q} = (q}")bl"white")mlwhite).} 

or (equivalendy) like this: 

!believes (Q) = (q})h2lindicates (Q} = (q})mQI&)h•I"IQl = (q)")b 
X lfv'2!1"black")al"black")mlblack)e + l"white")al"white")mlwhite).} 

And now we can clear something up. What I said about the (Q} in the text was 
that they form a complete set of observables of the composite system that consists 
of h and m and e. But that can't be exactly right, because any specification of the 
values of any complete set of observables of any given system is supposed to 
uniquely pick out some particular state of that system (that's what "complete" is 
supposed to mean), and yet the state of hand m and e in (8.1) obviously isn't the 
same as the state of hand m and e in (8.3) (since in (8.3) h has heard about the 
values of the {Q), and in (8.1) she hasn't), and nonetheless (8.1) and (8.3) are both 
supposed to be eigenstates of the {Q}, with (in both cases) the eigenvalues (q). 

Here's what's exactly right: What the (Q) form a complete set of observables of 
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Suppose that (8.3) obtains, and suppose that some third observer 
(call her h3) instructs h2 to go out and measure the values of the 
{Q} and then to ask h what she takes the values of the {Q} to be, 
and see if h is right about them and report back. When that's done, 
h2 will report (with certainty, if he's a competent observer) that h 
is right. 

And suppose that (8.3) obtains and that h3 instructs h2 to go 
out and measure the color of the electron and then to ask h what 
she takes the color of the electron to be, and see if she's right about 
it, and report back. When that's done, h2 will report (with cer­
tainty, if he's a competent observer) that h is right. 

And suppose that (8.3) obtains and that h3 instructs h2 to 
measure the values of the {Q} and to measure the color of the 
electron, and then to ask h what she thinks about both of those 
things and report back. When that's done, h2 will report (with 
certainty, if he's a competent observer) that his right; h2 will report 
(that is) that h has correct beliefs (when (8.3) obtains) about both 
{Q} and the color of the electron. 

So what's going on in (8.3) is that h knows (effectively) the value 
of the color of the electron, and h also knows (genuinely) the values 
of {Q}, even though {Q} and the color of the electron are quantum­
mechanically incompatible with one another. 3 

And of course that amounts to a direct violation of the familiar 
quantum-mechanical uncertainty relations.4 

* * * 

(that is: what the state lA) refers to) isn't h and m and e, it's a and m and e; and 
the state of a and m and e in (8.1) doesn't differ from the state of a and m and e 
in (8.3); and (8.1) and (8.3) are both eigenstates of the (Q} with the eigenvalues 
(q}. 

3. That is: the state I!QI = (q)) is a superposition of states associated with 
different eigenvalues of the color of the electron. 

4. And so something has got to be wrong with the familiar quantum-mechanical 
uncertainty relations (and with a good deal else of what's been said about measure­
ments in this book, too) on theories in which there isn't any such thing as a collapse 
of the wave function. Let's see what that is. 

Suppose that h carries out a measurement of some observable called 0 of some 
physical system called S. And suppose that when that measurement is done h stores 
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Let's look into that some more. 
Suppose that (8.3) obtains and that (consequently) h simulta­

neously knows the color of the electron (effectively) and the values 
of {Q} (genuinely); and suppose that h2 decides that he'd like to 
know those two things simultaneously too. Well, he's already half-

her memory of the value of 0 in some particular observable of her brain called 
M(O). 

If we want to describe quantitatively how well h has succeeded in ascertaining 
what the value of 0 is, in the course of a measurement like that, we can define an 
observable called E(O) of the composite systemS+ h which measures the error in 
h's belief about 0, viz.: 

E(O) = M(O) - 0 

And what it will mean (in this quantitative language) to say of h that she either 
genuinely or effectively knows the value of 0 is just that the state of S + h is an 
eigenstate of E(O) with eigenvalue 0. And so (on any theory in which there isn't 
any such thing as a collapse of the wave function) the question of whether or not 
the values of any two particular observables A and B can simultaneously be 
genuinely or effectively known to h will reduce to the question of whether or not 
there can be any state of the world which is an eigenstate of E(A) with eigenvalue 
0 and which is also an eigenstate of E(B) with eigenvalue 0, and of course that 
question will reduce (in turn) to the question of whether or not E(A) and E(B) are 
quantum-mechanically compatible with one another, and what we've discovered in 
this chapter (and what's been overlooked in all of the preceding chapters of this 
book, and in all of the standard discussions of the theory of measurement) is just 
that that question isn't always precisely the same as the question of whether or not 
A and B themselves are quantum-mechanically compatible with one another. 

But we're getting a little ahead of ourselves. Let's take it one step at a time. 
Suppose (to begin with) that A and B are both observables of physical systems 

which are external to h's brain. Then A and B will each necessarily be quantum­
mechanically compatible with both M(A) and M(B) (since A and B will each be 
observables of physical systems other than the one that both M(A) and M(B) are 
observables of). Moreover, if h is to be able to report her belief about the value of 
A without (in the process) disrupting her memory about the value of B, and if she 
is to be able to report her belief about the value of B without (in the process) 
disrupting her memory about the value of A (and the possibility of doing all that 
is presumably just a part of what it means to have beliefs about the value of A and 
the value of B), then M(A) and M(B) will also have to be quantum-mechanically 
compatible with one another. 
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way there, since (if (8.3) obtains) he already knows the values of 
{Q}. All he needs to do now is to measure the color of the electron, 
or (just as good) to ask h what the color of the electron is, or 
whatever. But the trouble is that doing any of those things is 
necessarily going to produce a state that's nonseparable between 
the electron and the color measuring device and hand h2, a state 
in which some observable of the brain of h2 is correlated with the 
value of the color of the electron; and so that state (the one that 
things end up in) can't possibly be an eigenstate of the {Q} (since 
the {Q} are operators of the composite system that consists just of 
the electron and the color measuring device and h, and not h2); and 
so (once that's done) h2's beliefs about the values of {Q} will 
necessarily be false. 

And of course that's just a special case of something more gen­
eral, which is that if any physical observable whatever gets corre­
lated with the color of the electron (except, of course, for the ones 
that are already correlated with it when (8.3) obtains), then (once 
that correlation is established) the state of the world can't possibly, 
any longer, be an eigenstate of the {Q}. And so no observer in the 
world other than h herself can ever be in a position (no matter what 

And it can be shown to follow from all that (see Albert, 1983) that E(A) and 
E(B) can be compatible with one another only in the event that A and B are 
compatible with one another. 

And so the dynamical equations of motion by themselves will entail that in any 
of the circumstances that were imagined in any of the previous chapters of this 
book, and in any of the circumstances that get imagined in any of the standard 
treatments of the theory of measurement (in all of which observers carry out 
observations only on things external to themselves), the familiar quantum-mechan­
ical uncertainty relations will invariably apply in precisely the familiar way. And 
of course it's ;ust that that makes it entertainable that those equations are (as a 
matter of fact) always exactly right. 

But what's going on in the state in (8.3) is an altogether different matter. The 
state in (8.3) is an eigenstate of E(hardness of the electron) with eigenvalue 0, and 
it is also an eigenstate of E( {Q}) with eigenvalue 0, and nonetheless the hardness 
of that electron is quantum-mechanically incompatible with the {Q}, and the 
possibility of all that hinges on the fact that M(hardness of the electron) is also 
quantum-mechanically incompatible with the {Q). 
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the quantum state of the world is) to simultaneously know (either 
genuinely or effectively) the values of the color of the electron and 
of the {Q}.5 

* * * 
Let's talk about (8.3) over again in the many-minds language. 

One of the things that's going on when (8.3) obtains (in this 
language) is that half of h's minds believe that the electron is black 
and half of them believe that the electron is white. 

And (moreover), when (8.3) obtains, each one of h's minds is 
effectively right about the color of the electron. And the sense of 
effective here, remember, is the stronger one, the one appropriate 
to many-minds talk: each one of h's minds (when (8.3) obtains) 
knows, genuinely, with certainty, what it would perceive if another 
measurement of the color of the electron were now to be carried 
out. 

And (moreover), when (8.3) obtains, all of h's minds also know 
(genuinely) that {Q} = {q}. And so the minds that effectively know 
that the electron is black are simultaneously aware (in virtue of the 
outcome of a measurement) of the existence of a branch of the wave 
function of their own brain associated with the belief that the 
electron is white, and the minds that effectively know that the 
electron is white are simultaneously aware (in virtue of the outcome 
of the same measurement) of the existence of a branch of the wave 

5. What's special about h, in the story we've been telling here, is (of course) that 
she's the one to whom the {Q} refer. 

But we can obviously tell a very similar story about h2. That story will involve 
some observables (call them {Q')) which refer to h2 in just the same way as the {Q} 
refer to h; and what will emerge from that story is that h2 can potentially simul­
taneously know the values of the color of the electron and the {Q') and that h can't, 
and that everybody else can't either. 

And so there are going to combinations of things that any particular observer 
can (in principle) simultaneously know about the world, and that nobody else can 
simultaneously know about it; what those things are will depend on the identity of 
the observer in question, and some of those things will invariably be things that 
are about that observer herself. 
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function of their own brain associated with the belief that the 
electron is black. 6 

In many-worlds talk (if that kind of talk made sense), this sort 
of thing would amount to an awareness (in virtue of the outcome 
of a measurement) of the existence of other worlds. 

Let's talk about (8.3) over again in Bohm's language; and let's 
suppose (just to keep us out of the sort of trouble we ran into in 
Chapter 7) that h stores her memories about the color of the 
electron and the values of the {Q} in the positions of some particles 
in her brain. 

Bohm's theory is completely deterministic. There are already 
objective physical matters of fact, when (8.3) obtains (on Bohm's 
theory), about how any subsequent measurements of the color of 
the electron or of the {Q} or of both of them are going to come 
out. Moreover, when (8.3) obtains, h knows, genuinely, with cer­
tainty, what those facts are. 7 And no other observer in the world 

6. Consider (by the way) how h's minds evolve, on this picture, in the course of 
the measurement of the (Q) that leads from (8.1) to (8.2). The principle we've been 
using so far (remember) is that each individual one of h's minds always evolves just 
as if that mind's present beliefs about the quantum state of the world were actually 
true. And what that will entail (even though the (Q}-measurement produces no 
change whatever in the physical state of h) is that half of those of h's minds that 
believed the electron "white" before the {Q}-measurement will believe it is "black" 
after it, and that half of those of h's minds that believed the electron "black" before 
the {Ql-measurement believe it is "white" after it. And so (if this is really how 
things work) once the {Q}-measurement is over, h's memories of what she thought 
about the color of the electron before that measurement won't be reliable ones. 

Of course, none of this will undercut what's just been said in the text: when (8.3) 
obtains, the beliefs of every one of h's minds about the outcome of any upcoming 
measurement of the color of the electron (no matter how those beliefs actually came 
into being) will invariably be effectively true. And (needless to say) the beliefs of 
every one of h's minds about any upcoming measurement of the (Q}, when (8.3) 
obtains, are going to be genuinely true. 

7. That is: when (8.3) obtains, either h believes that any subsequent measurement 
of the color of the electron will have the outcome "black" or she believes that any 
subsequent measurement of the electron will have the outcome "white"; and 
whichever one of those she does believe is (as a matter of objective physical fact) 
true. And of course when (8.3) obtains h also genuinely knows that {Q} = (q). 
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can ever be in a position to know, all at the same time, what those 
facts are. 

Think about how curious that is. Consider (for example) the 
following game: Suppose that (8.3) obtains, and suppose that h 
consents to allow some future act of hers to be determined (in 
accordance with some fixed decision table) by the results of some 
upcoming measurements of the {Q} and of the color of the elec­
tron.8 On Bohm's theory, there is, right now (that is: before those 
upcoming measurements get carried out) an objective physical mat­
ter of fact about what that future act of h's is going to be; and 
(moreover) h now knows, with certainty, what that act is going to 
be; and (moreover) no other observer in the world (no matter how 
adept they may be at measuring or calculating) can possibly know 
(right now) what that act is going to be. 

And so h, under these sorts of circumstances (even though the 
complete physical theory of the world here is a deterministic one), 
has what you might call an inviolably private wili.9 

* * * 

8. Here's what I mean: Suppose that (8.3) obtains now, and the rules of the game 
are that (say) one hour from now the {Q} will be remeasured and then (right after 
that) the color of the electron will be remeasured; and then (once those remeasure­
ments are done) h's next act will be determined (in accordance with some fixed 
decision table) by how those remeasurements come out. 

9. Consider, on this theory, how h's mental state evolves in the course of the 
{Ql-measurement that leads from (8.1) to (8.2). This turns out to be a very different 
business here than it was on the many-minds picture. 

What's crucial is that the (Q}-measurement produces no changes whatsoever in 
the overall wave function of h and m and e, and (consequently) it produces no 
probability currents in the wave function of h and m and e, and (consequently) it 
produces no changes in the positions of the particles that constitute h and m and 
e, and (consequently) it will produce no evolution of h's mental state at all.* And 
so, on this theory, h's memory (when (8.2) obtains) of what she thought about the 
color of the electron before the (Q}-measurement will be perfectly reliable; and h's 
beliefs (when ( 8.3) obtains) about the outcomes of any upcoming measurements of 
the color or of the (Q} or of both will all be perfectly right too. 

*Given these differences, the relationship between Bohm's theory and many­
minds theories is even more complicated than we understood it to be at the end of 
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And so the mental lives of quantum-mechanical observers who 
could arrange to carry out these sorts of measurements on their 
own brains would perhaps be unimaginably (for us) rich. 

Chapter 7. It turns out (in particular) that there can be explicit disagreements 
between these two theories about the probabilities that certain minds will have 
certain thoughts even under circumstances in which both theories agree that there 
will with certainty be matters of fact about what those thoughts are! Nonetheless 
(as the reader will see if she thinks the business through, or if she refers to the 
recent paper on these matters by Hilary Putnam and myself ( 1992), even these sorts 
of disagreements will prove impossible to settle by means of any kind of an 
experiment. 



Appendix 

The Kochen-Healy-Dieks 

Interpretations 

One more small tradition of attempts to solve the measurement 
problem ought to get mentioned here. They don't work, 1 but (since 
that isn't generally known yet) they've gotten a good deal of atten­
tion lately. 

These attempts (which are due to Kochen, 1985, Dieks, 1991, 
and Healy, 1989, and which are all more or less the same in their 
essentials) I'll refer to here as KHD interpretations of quantum 
mechanics. They all respond to the measurement problem, just as 
Bohm's theory does, by insisting that the dynamical equations of 
motion are always exactly right, and by denying that an observable 
pertaining to a physical system has a determinate value only in the 
event that the quantum state of that system happens to be an 
eigenstate of that observable. 

What Bohm's theory says, of course, is that there are certain 
particular observables pertaining to physical systems (namely: the 
positions of particles) which invariably have determinate values, no 
matter what the overall wave function of the world is. 

The KHD interpretations are a little more sophisticated than 
that. On the KHD interpretations, the identities of those observ­
ables which have determinate values (over and above the ones 
whose values are determined, in accordance with the standard way 
of thinking, by the overall wave function of the world) can vary 
from moment to moment; and those identities depend on what the 

1. The arguments which show that they don't work, which is what this appendix 
will mainly be about, were first presented in a couple of recent papers by Barry 
Loewer and myself (see, for example, Albert and Loewer, 1991). 
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overall wave function of the world is, and the particular way in 
which they depend on what that overall wave function is (that is: 
the explicit rules whereby they depend on what that overall wave 
function is) are cooked up so as to guarantee (apparently) that 
measurements always have outcomes. 

Let's set things up. 
Suppose that the dynamical equations of motion are always 

exactly right, and consider a measurement of (say) the hardness of 
an electron whose initial state is 

(A.l) aihard). + blsoft). 

When the measurement interaction is over, the state of the compos­
ite system consisting of the measuring device and the measured 
electron is 

(A.2) ai"hard")mihard). + bl"soft")misoft). 

Now, the state in (A.2) can of course be written down in any 
number of different bases; but it happens that the basis that it has 
been written down in, in (A.2), has a very special feature. If a =F b, 
then the basis that (A.2) happens to be written down in is (accord­
ing to a theorem of Schmidt) the only basis in which that state will 
take the "hi-orthogonal" form: 

(A.3) 
L c;!a;)mlb;)e 

i 

with (aiia;) = (b;lb;) = 0 unless i = j 

O.K. Here's how the KDH interpretations work. The rules (over 
and above principles A, B, and C of Chapter 2) are as follows: 

Rule 1. If some physical system S can be divided up (in any way 
at all) into two subsystems S1 and S2, and if the overall 
quantum state of Sis IQ), and if the unique hi-orthogo­
nal representation of IQ> in terms of states s1 and s2 is 
~;c;ia;)llb;)l, where the Ia;) are eigenstates of an observable 
called A and the lb;) are eigenstates of an observable 



THE KOCHEN-HEALY-DIEKS INTERPRETATIONS 

193 

called B, then S1 has a determinate value of observable 
A and S2 has a determinate value of observable B. 

Rule 2. If S is in the state IQ), then the probability that A = a; 
on S1 and B = b; on S2 is d. 

And that (at first sight) seems to work extraordinarily well, 
because rule 1 entails that when states like (A.2) obtain, there will 
invariably be some determinate matter of fact about what the 
hardness of the electron is and about what m indicates the hardness 
of the electron to be. And as a matter of fact, it's easy to see that 
rule 1 will entail that at the conclusion of any interaction whatever 
between a good measuring device (which starts out in its ready 
state) and a measured system (which can start out in any state at 
all) there will be some determinate matter of fact about the value 
of whatever observable of the measured system it is that that device 
is designed to measure, and also about what the measuring device 
indicates about that value. And of course rule 2 will guarantee that 
the probability of that one such value as opposed to another ob­
taining, or being indicated, will be the right one. And all that gets 
done (just as in Bohm's theory) without a collapse of the wave 
function. 

But there are difficulties. Let's run through (in order of increasing 
seriousness) three of them. 

1. In the event that any two of the c;'s in (A.3) are equal to one 
another, there will be an infinity of different hi-orthogonal decom­
positions of the state in question; and so in cases like that rule 1 
will entail that an infinity of mutually incompatible observables of 
sl and s2 will simultaneously have noncontextual determinate val­
ues, and that will run afoul of the theorems of Gleason and Kochen 
and Specker that were mentioned in Chapter 7. But maybe that 
worry (unlike the following two) need not be such a big one. States 
in which any two of the c;'s are exactly equal to one another, after 
all, will constitute a set of measure zero in the set of all of the 
possible quantum states of any given system. Perhaps there's a way 
of just ignoring them. 

2. The KDH interpretations (as they've been written down so 
far) are radically incomplete. What's missing is a crucial chunk of 
the dynamics. 
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Here's what that means: As the quantum state of the world 
evolves, in accordance with the dynamical equations of motion, the 
observable of any given subsystem of the world that rule 1 picks 
out as the one that's presently well-defined is (of course) going to 
change. And the question that the missing chunk of the dynamics 
has to answer (which is analogous to the one that the velocity 
algorithm answers in Bohm's theory) is how the values of those 
observables that have values at t2 are related to the values of those 
observables that had values at t1. 

And no workable idea of what that missing chunk of the dynam­
ics could possibly look like has emerged yet.2 

3. The measuring devices we actually have and make use of in 
the world are never absolutely "good" ones. In any real measure­
ment, there is always some probability of the measuring device 
making an error. For any real measurement of (say) the hardness 
of an electron whose initial state is the one in (A.l), the post 
measurement state of the composite system consisting of m and e 
will invariably be something like 

2. We do know, for example, that that chunk can't possibly be a deterministic 
one, as it is in Bohm's theory. 

Here's how: Imagine a composite system which is initially prepared in a com­
pletely separable state (that is: a state in which there is a determinate matter of fact, 
on the standard way of thinking about what it means to be in a superposition, 
about the state of every individual subsystem). In a state like that, the observables 
that get picked out by rule 1 as well-defined, and the values of those observables, 
are (as the reader can easily confirm for herself) precisely the ones that get picked 
out by that state on the standard way of thinking. 

And so knowing everything that there is to be known (on the KDH interpreta­
tions) about a system like that, when a quantum state like that obtains, is just a 
matter of knowing what that quantum state is. 

And of course there isn't any matter of principle that stands in the way of 
anybody's knowing that. 

And so, if that missing chunk of the dynamics were deterministic (which would 
mean that the entire dynamics of the world is deterministic), then anybody who 
merely knew that initial quantum state would be in a position to calculate, with 
certainty, what the values of all of those observables which have determinate values 
at any future time will be, even (for example) at times when the state of that 
composite system may have become nonseparable. 

And that, of course, would violate rule 2, and it would violate our empirical 
experience of the world. 
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(A.4) IJ> = cl"hard")mlhard), + dl"soft")mlsoft), 

+ ~"hard")mlsoft), + gl"soft")mlhard), 

in which the last two terms represent errors. In the more expensive 
sorts of hardness measuring devices, the coefficients f and g will be 
small; but the important point is that for any realizable such device, 
they will invariably be nonzero. And so long as f and g are nonzero, 
(A.4) is not a hi-orthogonal representation of the state lJ). 

Now, there will necessarily be some hi-orthogonal representation 
of IJ>. That representation will look something like this: 

(A.S) II) = klw)ml®), + Llz)ml@'), 

where I®) and I®') are eigenstates of some spin observable of e 
other than (and incompatible with) hardness, and lw) and lz) are 
eigenstates of some observable of mother than (and incompatible 
with) what m indicates about the hardness. 

And so when II> obtains rule 1 will not entail that the hardness 
of the electron has any determinate value, and (more importantly) 
it will also not entail that there is any determinate matter of fact 
about what m indicates the hardness of the electron to be. 

And as a matter of fact, it turns out that no matter how small f 
and g are (that is: no matter how small the imperfections of the 
measuring device are), there will always be ways of choosing a and 
b in (A.1) such that the observable of e that gets picked out by rule 
1 as well-defined, when IJ) obtains, will be maximally incompatible 
with its hardness and (more importantly) such that the observable 
of m that gets picked out by rule 1 as well-defined, when IJ) obtains, 
will be maximally incompatible with what it indicates about that 
hardness!3 

And (needless to say) whatever goes for interactions between 
macroscopic measuring devices and electrons will also go for inter-

3. It was Yakir Aharonov who first pointed this out to me. Here's how the 
argument goes: 

Consider the following two states: 

jSl) = aJ"hard")mJhard), + bJ"soft")mJsoft), 
jS2) = aJzip = + l)mJblack), + bjzip = -l)mJwhite), 
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actions between sentient observers and macroscopic measuring de­
vices. 

And (consequently) if the world is (in any of the relevant senses) 
anything less than entirely perfect (and of course it invariably is 
something less than that), then the KDH interpretations don't end 
up doing their job right. And that's that. 

There's an interesting variant on the KHD interpretations, which 
is due to Van Fraassen (Van Fraassen, 1991) and wherein the 
algorithm for picking out what's well-defined at any given moment 
depends not on the overall state of the world at that moment 
(which is what goes on in the KHD interpretations) but rather on 
what sorts of dynamical interactions led up to that state. 

What Van Fraassen does is to present a general mathematical 
characterization of the sorts of dynamical interactions whereby 

where 

!zip = +1)m = 1/VT(I"hard")m + l"soft")m) 
!zip = -1)m = lfVT(I"hard")m- l"soft")m) 

(and note that IS1) is the state in equation (A.2); the one that things end up in at 
the end of a good measurement of the hardness of an electron whose initial state 
is the one in (A.1)). 

Now, if it happens to be the case that a = -b (in the above expressions for IS1) 
and IS2)), then (as the reader can easily confirm for herself, just by writing things 
out) IS1) and IS2) are precisely the same state; and (moreover) if it happens to be 
the case that a is very nearly equal to -b, then IS1) and IS2) are almost precisely 
the same state (that is: if a is very nearly equal to -b, then (S1IS2) is very nearly 
equal to 1). 

And so in the event that a is sufficiently close to -b in the initial state of the 
measured electron (that is: in the event that a is sufficiently close to-bin the state 
in (A.1)), then an arbitrarily small imperfection in the measuring device (that is: an 
arbitrarily small departure from the initial conditions which represent a perfect 
measuring device, in its ready state) can have the effect of shifting the post mea­
surement state of the composite system from IS1) to IS2). 

And note that the observable of the electron that rule 1 picks out as well-defined 
in the state IS2) (which is its color) is maximally incompatible with its hardness, 
and note (and this is really the punch line) that the observable of the hardness 
measuring device that rule 1 picks out as well-defined in the state IS2) (which is its 
zip) is maximally incompatible with what the device indicates about hardness. 
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measurements can be accomplished (that is: what he does is to 
present a general mathematical characterization of the sorts of 
interactions whereby the value of some observable of some physical 
system after the interaction is over can in one way or another 
constitute a record of the value of some other observable of some 
other physical system before the interaction began). 

And what his algorithm stipulates is that what's well-defined at 
the conclusion of any of those sorts of interactions is the value of 
the record observable. 

But the trouble (here as before) is that none of the (imperfect) 
measurements which we actually carry out will ever precisely sat­
isfy Van Fraassen's characterization. And so there isn't ever going 
to be a matter of fact (in the real world) about what observable the 
record observable is. And so Van Fraassen's algorithm will in gen­
eral pick out nothing whatsoever (over and above what gets picked 
out by principles A-C of Chapter 2) as well-defined. 
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