第一次作业参考解答

王英洁

2019年10月20日

目录

问题一	阅读 ····································	1
问题二	抛硬币	2
2.1	第一问	2
2.2	第二问	3
问题三	区别盒子	5
问题四	Riesz 定理	6
4.1	有限维	7
4.2	任意维	7
问题五	迹的等价定义	10
5.1	第一问	11
5.2	第二问	11
问题六	算子的分解	11
问题七	算符由期望唯一决定	12
问题八	<u>迹</u>	13

问题一 阅读

阅读 Sakurai 书第一章。

问题二 地硬币

2

问题二 抛硬币

抛掷一枚硬币, 正面朝上的概率是 0:5, 反面朝上的概率也是 0:5.

- 1. 抛 100 次和抛 200 次, 有一半正面朝上的概率分别是多少?
- 2. 抛 100 次和抛 200 次, 分别计算正面朝上的硬币的百分比介于 45% 和 55% 之间的概率.

2.1 第一问

根据二项分布的知识, 抛 n 次有 k 次正面向上的概率为

$$P(n,k) = \binom{n}{k} \left(\frac{1}{2}\right)^n$$

于是答案是

$$\begin{split} P(100,50) &= \binom{100}{50} \left(\frac{1}{2}\right)^{100} \\ &= \frac{12611418068195524166851562157}{158456325028528675187087900672} \\ &\approx 0.0795892 \end{split}$$

$$\begin{split} P(200,100) &= \binom{200}{100} \left(\frac{1}{2}\right)^{200} \\ &= \frac{11318564332012910145675522134685520484313073709426667105165}{200867255532373784442745261542645325315275374222849104412672} \\ &\approx 0.0563485 \end{split}$$

问题二 抛硬币 3

Mathematica

把以下代码喂给麦酱

 $P[n_{-}] := Binomial[n,n/2]/2^n; N@*P/@{100,200}$

运行结果为

{0.0795892, 0.0563485}

我们还可以进一步观察 P(n) 的性质,例如做一下渐进展开

Series[P[n], $\{n, \setminus [Infinity], 2\}$]

得到

$$\sqrt{\frac{2}{n\pi}} - \frac{1}{\sqrt{\pi}} \left(\frac{1}{2n}\right)^{\frac{3}{2}} + \mathcal{O}\left(\left(\frac{1}{n}\right)^{\frac{5}{2}}\right),$$

可见该概率渐进按 $\frac{1}{\sqrt{n}}$ 减小。

2.2 第二问

由二项分布知,(如果把介于理解成闭区间)

$$P(0.45n \leqslant k \leqslant 0.55n) = \sum_{k=\lceil 0.45n \rceil}^{\lfloor 0.55n \rfloor} P(n,k)$$
$$= \sum_{k=\lceil 0.45n \rceil}^{\lfloor 0.55n \rfloor} \binom{n}{k} \left(\frac{1}{2}\right)^n$$

其中 $\lceil x \rceil := \max_{n \in \mathbb{Z}, n \geqslant x} n$, $\lfloor x \rfloor := \min_{n \in \mathbb{Z}, n \leqslant x} n$ 。即,

$$P_{100} = \sum_{k=45}^{55} {100 \choose k} \left(\frac{1}{2}\right)^{100}$$

$$= \frac{28868641920228451421269389993}{39614081257132168796771975168}$$

$$P_{200} = \sum_{k=90}^{110} \binom{200}{k} \left(\frac{1}{2}\right)^{200}$$

 $=\frac{43318698342679544683539345334364338262530541075382305020835}{50216813883093446110686315385661331328818843555712276103168}$

问题二 抛硬币 4

Mathematica

这里要计算的 n 是整百,故可略去两种取整函数,让麦酱执行

Sum[Binomial[#,k]/2^#,{k,0.45#,0.55#}]&/@{100,200}

或者用内置函数告诉麦酱要算什么概率,让聪明的麦酱自己做题 (你已经是成熟的计算软件了,该学会自己做题了.jpg ⑤)

Probability[0.45#<=x<=0.55#,

x \[Distributed] BinomialDistribution[#, 0.5]]&/@{100,200}

麦酱说结果是

{0.728747, 0.862633}

PS: 如果把介于理解成开区间,则

$$P(0.45n < k < 0.55n) = \sum_{k=\lfloor 0.45n \rfloor + 1}^{\lceil 0.55n \rceil - 1} P(n, k)$$
$$= \sum_{k=\lfloor 0.45n \rfloor + 1}^{\lceil 0.55n \rceil - 1} \binom{n}{k} \left(\frac{1}{2}\right)^n$$

得

$$\begin{split} P_{100} &= \sum_{k=46}^{54} \binom{100}{k} \left(\frac{1}{2}\right)^{100} \\ &= \frac{25028112469344940196474352933}{39614081257132168796771975168}, \\ P_{200} &= \sum_{k=91}^{109} \binom{100}{k} \left(\frac{1}{2}\right)^{100} \\ &= \frac{41229810018085589468206855330570581894398423031917204918535}{50216813883093446110686315385661331328818843555712276103168} \end{split}$$

Mathematica

依然扔掉取整函数, 让麦酱执行

Sum[Binomial[#,k]/2^#,{k,45#/100+1,55#/100-1}]&/@{100,200}//N

结果是

{0.631798, 0.821036}

问题三 区别盒子 5

Note

本题在批改时允许各种近似,包括斯特林近似和大数定律。没有给出具体数字的也判对。

PS: 去年的助教用大数定律不给分······

问题三 区别盒子

设想有一个盒子,可以储存光子. 盒子里储存了 10^6 个沿 x 方向偏振的光子和 10^6 个沿 y 方向偏振的光子. 盒子的尺寸远大于光子的相干波长,所以可以忽略光子所遵从的 Bose 统计. 另有一个相同的盒子,里面储存了 10^6 个左旋圆偏振光子. 现在,给你其中一个盒子,当然不会告诉你盒子里面储存的光子有着怎样的偏振行为. 你可以将盒子里的光子一一引出来进行测量,而且假设测量装置是理想的. 你能否通过观测来确定给你的到底是哪一个盒子? 如果可以. 估算一下猜测失败的可能性有多大?

首先明确圆偏振态与线偏振态。Sakurai 书中的 1.1.12 式给出了经典的电场偏振矢量的关系,右旋光的复偏振矢量为

$$\boldsymbol{\varepsilon} = \left[\frac{1}{\sqrt{2}} \hat{\boldsymbol{x}} e^{\mathrm{i}(kz - \omega t)} + \frac{\mathrm{i}}{\sqrt{2}} \hat{\boldsymbol{y}} e^{\mathrm{i}(kz - \omega t)} \right],$$

而量子态则满足

$$|r\rangle = \frac{1}{\sqrt{2}} (|x\rangle + i |y\rangle),$$
$$|l\rangle = \frac{1}{\sqrt{2}} (|x\rangle - i |y\rangle).$$

Note

事实上, 右、左旋态是光子的螺度 (helicity) $\hat{\xi} := \hat{p} \cdot \hat{s}$ 的 $\pm \hbar$ 本征态。

首先,如果我们抽取少部分光子进行测量,由于光子总数巨大,每次抽取可认为是独立的,相当于在测量一个含有无穷粒子的系综。于是考察密度算子,

$$\begin{split} \hat{\rho}_1 &= \frac{1}{2} \left| x \right\rangle\!\langle x \right| + \frac{1}{2} \left| y \right\rangle\!\langle y \right|, \\ \hat{\rho}_2 &= \frac{1}{2} \left| l \right\rangle\!\langle l \right| + \frac{1}{2} \left| r \right\rangle\!\langle r \right| \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\left| x \right\rangle - \mathrm{i} \left| y \right\rangle \right) \left(\left\langle x \right| + \mathrm{i} \left\langle y \right| \right) + \frac{1}{2} \left(\left| x \right\rangle + \mathrm{i} \left| y \right\rangle \right) \left(\left\langle x \right| - \mathrm{i} \left\langle y \right| \right) \right] \\ &= \frac{1}{4} \left(\left| x \right\rangle\!\langle x \right| + \mathrm{i} \left| x \right\rangle\!\langle y \right| - \mathrm{i} \left| y \right\rangle\!\langle x \right| + \left| y \right\rangle\!\langle y \right| + \left| x \right\rangle\!\langle x \right| - \mathrm{i} \left| x \right\rangle\!\langle y \right| + \mathrm{i} \left| y \right\rangle\!\langle x \right| + \left| y \right\rangle\!\langle y \right|, \end{split}$$

问题四 RIESZ 定理 6

于是 $\hat{\rho}_1 = \hat{\rho}_2$,仅抽取少量光子是无法区分的。

但是我们还可以考虑测量更多的光子。当我们把所有光子都测完时,之前由于抽取带来的 $\frac{1}{2}$ 的经典随机性完全丧失。如果采用 x 偏振片,盒一将有精确的 10^6 个通过, 10^6 个不通过 (题干说测量装置理想);而盒二的每个光子都有一半概率通过,一半概率不通过,这是量子测量的随机性。根据上一题,我们知道因为光子总数很多,精确一半通过几乎是不可能的,于是成功区分的概率很大。也可使用波片加偏振片组合成"圆偏振片"来测量左右旋,效果一样。

失败概率的计算 把 "失败" 改写成一个明确的事件,这个有点微妙。记 A= "拿到盒一", B= "拿到盒二", C= "恰好通过一半",

$$P(C|B) = {2 \times 10^6 \choose 10^6} \left(\frac{1}{2}\right)^{2 \times 10^6} \approx 0.00056419,$$

答这个的判对了。

$$P(B)P(C|B) = \frac{1}{2}P(C) \approx 0.000282095,$$

答这个的也判对了。

$$P(B|C) = \frac{P(B)P(C|B)}{P(C)}$$

$$= \frac{P(B)P(C|B)}{P(A)P(C|A) + P(B)P(C|B)}$$

$$= \frac{\frac{1}{2} \times {\binom{2 \times 10^6}{10^6}} \left(\frac{1}{2}\right)^{2 \times 10^6}}{\frac{1}{2} \times 1 + \frac{1}{2} \times {\binom{2 \times 10^6}{10^6}} \left(\frac{1}{2}\right)^{2 \times 10^6}}$$

$$\approx 0.000563871,$$

答这个的应该是最准确的。

问题四 Riesz 定理

查阅数学书,证明 Riesz 定理.

Theorem 1. 设 \mathcal{H} 是 Hilbert space, $f \in \mathcal{H}^*$, 则存在唯一的 $u_f \in \mathcal{H}$ 使得

$$\forall v \in \mathscr{H}, f(v) = (u_f, v).$$

Riesz 定理所要求的 u_f 是 \mathcal{H} 中的,有的同学写了一圈,所做的事情只是把 $f \in \mathcal{H}^*$ 用 \mathcal{H}^* 对偶基展开,这样是不对的,什么都没证。

问题四 RIESZ 定理 7

4.1 有限维

有限维空间的好处在于存在有限的基底。

Proof 先证存在性。取 V 的一组正交归一基底 $\{e_i\}_{i=1}^n$,n 是 V 的维数。则任取 $v\in V$,作 展开 $v=\sum_{i=1}^n v^ie_i$,则

$$f(v) = f\left(\sum_{i=1}^{n} v^{i} e_{i}\right)$$
$$= \sum_{i=1}^{n} v^{i} f(e_{i}),$$

令 $u_f = \sum_{i=1}^n (f(e_i))^* e_i$, 则有

$$(u_f, v) = \sum_{i=1}^n f(e_i)v^i = f(v).$$

再证唯一性。设还有 $u_f' \in V$ 使得 $\forall v \in V$, $(u_f', v) = f(v)$, 则

$$\forall v \in V, \quad (u_f - u_f', v) = f(v) - f(v) = 0 \implies u_f' = u_f.$$

Note

要注意的是通过构造来证明时仅构造出一个,并不能说明唯一性,因为具体构造的条件 ⇒ 需要的性质,反过来未必。可能存在另外的构造方式,得到另一个满足所要求性质的 玩意儿,所以唯一性是需要另证的。

4.2 任意维

Definition

线性映射 $f: V \to W$ 的核 (kernel) 定义为 ker $f := \{v \in V \mid f(v) = 0_W\}$.

Definition

内积空间 V 的线性子空间 M 的正交补 (orthogonal complement) 定义为 M^{\perp} := $\{v \in V \mid \forall u \in M, (u, v) = 0\}.$

考虑有限维线性空间, $\ker f$ 是一张超曲面,其在零元处的法矢平行于要找的矢量。于是推广这样的几何直观,有如下不依赖于维数的做法:

问题四 RIESZ 定理 8

Proof 若 f = 0, 则有 f(v) = (0, v) 。 否则,记 $K = \ker f$ 。由于 f 连续, $\ker f$ 是闭的。在 K^{\perp} 里必存在一个矢量 w 使 f(w) = 1 。于是 $\forall v \in \mathcal{H}$,令 u = v - f(v)w,则显然

$$f(u) = f(v) - f(v) = 0,$$

即 $u \in \ker f$ 。于是 u 和 w 正交, 这给出

$$0 = (w, u) = (w, v - f(v)w) = (w, v) - f(v)(w, w),$$

于是

$$f(v) = \left(\frac{w}{\|w\|^2}, v\right),\,$$

Note

思考之前有限维的证明哪里不适用于无穷维。

也可沿用有限维的思路,我们补一个性质:

Property 1. 内积空间 V 和 W 之间的映射 $f:V\to W$ 是连续的当且仅当是有界 (bounded) 的,即存在非负实数 ||f|| (称为 f 的范数) 使得

$$\forall v \in V, \quad \|f(v)\|_W \leqslant \|f\| \|v\|_V.$$

 \Diamond

一个引理:

Lemma 1 设 $\{e_n\}_{n=1}^{\infty}$ 是 Hilbert space \mathcal{H} 中的正交归一集,级数

$$\sum_{n=1}^{\infty} a_n e_n$$

收敛当且仅当

$$\sum_{n=1}^{\infty} |a_n|^2$$

收敛。

它们的证明略去。下面给出沿用有限维的思路的证明(感谢王云汉同学)

Proof 若 $\dim \mathcal{H}$ 有限,证明同前。否则,取 \mathcal{H} 的正交归一基底 $\mathcal{B} = \{e_{\alpha}\}_{\alpha \in I}$,其中 I 是可数或不可数的指标集。不妨设 $f(e_{\alpha}) \geq 0$ 恒成立(否则给函数值小于 0 的基底乘 -1 即可,不改变正交归一)。

我们首先证明, $J = \{\alpha \in I \mid f(e_{\alpha}) \neq 0\}$ 是至多可数集。令

$$J_n := \left\{ \alpha \in I \mid f(e_\alpha) > \frac{1}{n} \right\},\,$$

我们断言 J_n 是有限集。否则, 在 J_n 中可取得两两不同的一个序列 $\{\alpha_k\}_{k=0}^{\infty}$, 令

$$v = \sum_{k=0}^{\infty} \frac{1}{k} e_{\alpha_k},$$

由于 $\frac{1}{k}$ 平方和收敛, v 是存在的。而

$$f(v) = \sum_{k=0}^{\infty} \frac{1}{k} f(e_{\alpha_k}) > \frac{1}{n} \sum_{k=1}^{\infty} \frac{1}{k}$$

不存在,矛盾。故每个 J_n 都是有限的,从而 $J = \bigcup_{n=1}^{\infty} J_n$ 是至多可数的。

- (1) 若 J 是有限的, 令 $u_f = \sum_{\alpha \in J} (f(e_\alpha))^* e_\alpha$;
- (2) 若 J 是可数的,记 $J = \{\beta_n\}_{n=1}^{\infty}$ 。现在证明

$$u_f = \sum_{n=1}^{\infty} (f(e_{\beta_n}))^* e_{\beta_n}$$

是存在的。则需要证明

$$\sum_{n=1}^{\infty} |f(e_{\beta_n})|^2$$

是收敛的。这里我们需要 Property 1, 记 f 的范数为 ||f||, 令

$$u_f^{(m)} = \sum_{n=1}^m (f(e_{\beta_n}))^* e_{\beta_n},$$

则

$$f\left(u_f^{(m)}\right) = \sum_{n=1}^m |f(e_{\beta_n})|^2 \leqslant ||f|| ||u_f^{(m)}|| = ||f|| \sqrt{\sum_{n=1}^m |f(e_{\beta_n})|^2}$$

$$\implies \sum_{n=1}^m |f(e_{\beta_n})|^2 \leqslant ||f||^2,$$

部分和递增且有上界, 则收敛性得证。

综上 (1)(2),

$$u_f = \sum_{\alpha \in J} \left(f(e_\alpha) \right)^* e_\alpha$$

总是存在的。

现在考虑 $\forall v \in \mathcal{H}$, 由于 $\mathcal{H} = \overline{\operatorname{Span}\mathcal{B}}$ (正交归一基定义中的性质),存在至多可数的 $K \subset I$,使得 $v = \sum_{\alpha \in K} (e_{\alpha}, v) e_{\alpha}$,于是 $K = \{\alpha \in I \mid (e_{\alpha}, v) \neq 0\}$ 。计算得

$$f(v) = \sum_{\alpha \in K} (e_{\alpha}, v) f(e_{\alpha})$$
$$= \sum_{\alpha \in J \cap K} (e_{\alpha}, v) f(e_{\alpha}),$$

而

$$(u_f, v) = \sum_{\alpha \in J} f(e_\alpha)(e_\alpha, v)$$
$$= \sum_{\alpha \in J \cap K} f(e_\alpha)(e_\alpha, v),$$

故 $f(v) = (u_f, v)$ 得证。 唯一性的证明同前。

Note

顺便注意到 $u_{cf}=c^*u_f$,有同学说 $f\mapsto u_f$ 给出 \mathscr{H} 到 \mathscr{H}^* 的同构,这只对实空间成立。

问题五 迹的等价定义

考虑 \mathbb{C}^n 中的向量和矩阵和线性变换. 设 $|\psi\rangle$, $|\varphi\rangle \in \mathbb{C}^n$, $X \in \mathcal{L}(\mathbb{C}^n)$. 证明如下等式.

- 1. $\operatorname{Tr}(|\psi\rangle\langle\varphi|) = \langle\varphi|\psi\rangle;$
- 2. $\langle \psi | X | \varphi \rangle = \text{Tr}(X | \varphi \rangle \langle \psi |)$.

Note

事实上,第一小问是 Tr 的"basis-free" 等价定义:双线性映射

$$t: V \times V^* \to \mathbb{F}$$

 $(\psi, \varphi^*) \mapsto \varphi^*(\psi)$

通过张量积的 universal property 所诱导的 $Tr: V \otimes V^* \to \mathbb{F}$:

问题六 算子的分解 11

5.1 第一问

取一组基 $\mathcal{B} = \{|i\rangle\}_{i=1}^n$,直接计算得

$$\begin{aligned} \operatorname{Tr}(|\psi\rangle\!\langle\varphi|) &= \sum_{i} \langle i| \left(|\psi\rangle\!\langle\varphi|\right) |i\rangle \\ &= \sum_{i} \langle \varphi|i\rangle \, \langle i|\psi\rangle \\ &= \langle \varphi|\psi\rangle \end{aligned}$$

5.2 第二问

由第一问, $\langle \psi | X | \varphi \rangle = \langle \psi | (X | \varphi \rangle) = \text{Tr}(X | \varphi \rangle \langle \psi |)$ 。

Note

如果不放心可以检验一下 $X(|\varphi\rangle\langle\psi|)=(X|\varphi\rangle)\langle\psi|$ 是否成立,用数学系的记号写起来分别是 $X\circ(\varphi\otimes\psi^*)$ 和 $X(\varphi)\otimes\psi^*$,而 $\forall v\in V$,

$$(X \circ (\varphi \otimes \psi^*))(v) = X((\psi, v)\varphi) = (\psi, v)X(v) = (X(\varphi) \otimes \psi^*)(v),$$

故而该"结合律"是成立的。

问题六 算子的分解

如果线性算子 A 具有性质 $A^{\dagger} = -A$, 那么这样的算子称作反厄密算子. 证明: 任意一个算子 $X \in \mathcal{L}(\mathcal{H})$ 都可以表示为一个厄密算子和一个反厄密算子的和.

Proof 任取 $X \in \mathcal{L}(\mathcal{H})$, 令

$$A = \frac{X + X^{\dagger}}{2},$$
$$B = \frac{X - X^{\dagger}}{2},$$

则 A 厄米, B 反厄米, 证毕。

问题七 算符由期望唯一决定

对于任意的 $|\psi\rangle \in \mathcal{H}$, 如果算子 $X \in \mathcal{L}(\mathcal{H})$ 满足条件

$$\langle \psi | X | \psi \rangle = \langle \psi | X | \psi \rangle^*,$$

那么证明 X 是厄密算子.

更一般的情形是, 如果对于任意的 $|\psi\rangle$, 两个算子 A 和 B 满足 $\langle\psi|A|\psi\rangle=\langle\psi|B|\psi\rangle$, 那 么 A=B.

Note

要注意的是不能想当然,A=0 说的是 $\forall |\psi\rangle$, $A|\psi\rangle=0$,而 $\forall |\psi\rangle$, $\langle \psi|A|\psi\rangle=0$ 和 A=0 的关系是需要推导的。

Proof 注意到

$$(\psi, X\psi)^* = (X\psi, \psi) = (\psi, X^{\dagger}\psi),$$

我们首先证明一般情况。

令 C = A - B, 则有 $\forall |\psi\rangle$, $\langle \psi | C | \psi\rangle = 0$, 任取 $|\psi\rangle$, $|\varphi\rangle$, 注意到

$$\langle \psi + \varphi | C | \psi + \varphi \rangle = \langle \psi | C | \psi \rangle + \langle \psi | C | \varphi \rangle + \langle \varphi | C | \psi \rangle + \langle \varphi | C | \varphi \rangle,$$

则有

$$\langle \psi | C | \varphi \rangle + \langle \varphi | C | \psi \rangle = 0, \tag{1}$$

再用 $i|\varphi\rangle$ 代替 $|\varphi\rangle$, 得

$$i \langle \psi | C | \varphi \rangle - i \langle \varphi | C | \psi \rangle = 0, \tag{2}$$

(1) - i (2) 得 $\langle \psi | C | \varphi \rangle = 0$,于是 C = 0。

回到之前的情况,则得
$$X=X^{\dagger}$$
。

Note

得到 $\langle \psi|C|\varphi\rangle=0$ 后能直接写 C=0 是因为 $|\psi\rangle$ 可以取到 $C|\varphi\rangle$,根据内积具有非退化性,即知 $C|\varphi\rangle=0$ 。

问题八 迹

13

Note

极化恒等式:

$$4 \langle \psi | C | \phi \rangle = \langle \psi + \phi | C | \psi + \phi \rangle - \langle \psi - \phi | C | \psi - \phi \rangle - \mathrm{i} \langle \psi + \mathrm{i} \phi | C | \psi + \mathrm{i} \phi \rangle + \mathrm{i} \langle \psi - \mathrm{i} \phi | C | \psi - \mathrm{i} \phi \rangle$$

证明: 注意到 $\forall C \in \mathcal{L}(\mathcal{H}), |\psi\rangle, |\phi\rangle \in \mathcal{H}$,

$$\begin{split} \langle \psi + \phi | C | \psi + \phi \rangle - \langle \psi - \phi | C | \psi - \phi \rangle \\ = \langle \psi | C | \psi \rangle + \langle \psi | C | \phi \rangle + \langle \phi | C | \psi \rangle + \langle \phi | C | \phi \rangle \\ - (\langle \psi | C | \psi \rangle - \langle \psi | C | \phi \rangle - \langle \phi | C | \psi \rangle + \langle \phi | C | \phi \rangle) \\ = & 2 \langle \psi | C | \phi \rangle + 2 \langle \phi | C | \psi \rangle \end{split}$$

利用内积对第一槽的反线性, 还有

$$- i \langle \psi + i\phi | C | \psi + i\phi \rangle + i \langle \psi - i\phi | C | \psi - i\phi \rangle$$

$$= - i (2 \langle \psi | C | i\phi \rangle + 2 \langle i\phi | C | \psi \rangle)$$

$$= 2 \langle \psi | C | \phi \rangle - 2 \langle \phi | C | \psi \rangle$$

相加即得。

另证:

Proof 取一组正交归一基, 易知 C 的对角元为零, 则有分量形式

$$\langle \psi | C | \psi \rangle = \sum_{i,j} C_{i,j} \psi_i^* \psi_j$$

=
$$\sum_{(i,j)} C_{i,j} \psi_i^* \psi_j + C_{j,i} \psi_j^* \psi_i$$

=
$$0,$$

我们可以取定某对 i,j , 并选取 $|\psi\rangle$ 使得它只有 i,j 分量非零, 则

$$C_{i,j}\psi_i^*\psi_j + C_{j,i}\psi_j^*\psi_i = 0,$$

现在固定 ψ_j ,则由于 ψ_i 和 ψ_i^* 线性独立(复平面上 z 和 z^* 是线性独立的两个函数),知 $C_{i,j}=C_{j,i}=0$ 。由于 i,j 是任取的,则知 C=0。

问题八 迹

证明算子 A 的迹 Tr(A) 不依赖于 Hilbert 空间的基向量的选择, 或者说, 不依赖于表象的选择.

问题八 迹 14

Note

如果注意到之前提到的迹的 basis-free 定义,则这结论是显然的。

Proof 设有基底 $\{|e_i\rangle\}$, $\{|f_i\rangle\}$, $\forall A \in \mathcal{L}(\mathcal{H})$,

$$\operatorname{Tr}^{(e)}(A) = \sum_{i} \langle e_{i} | A | e_{i} \rangle$$

$$= \sum_{i,j} \langle e_{i} | A | f_{j} \rangle \langle f_{j} | e_{i} \rangle$$

$$= \sum_{i,j} \langle f_{j} | | e_{i} \rangle \langle e_{i} | A | f_{j} \rangle$$

$$= \sum_{j} \langle f_{j} | A | f_{j} \rangle$$

$$= \operatorname{Tr}^{(f)}(A).$$